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ABSTRACT

Recent advancements in conversational large language models (LLMs), such as ChatGPT, have demonstrated remarkable
promise in various domains, including drug discovery. However, existing works mainly focus on investigating the capabilities of
conversational LLMs on chemical reaction and retrosynthesis. While drug editing, a critical task in the drug discovery pipeline,
remains largely unexplored. To bridge this gap, we propose ChatDrug, a framework to facilitate the systematic investigation of
drug editing using LLMs. ChatDrug jointly leverages a prompt module, a retrieval and domain feedback (ReDF) module, and a
conversation module to streamline effective drug editing. We empirically show that ChatDrug reaches the best performance
on 33 out of 39 drug editing tasks, encompassing small molecules, peptides, and proteins. We further demonstrate, through
10 case studies, that ChatDrug can successfully identify the key substructures (e.g., the molecule functional groups, peptide
motifs, and protein structures) for manipulation, generating diverse and valid suggestions for drug editing. Promisingly, we
also show that ChatDrug can offer insightful explanations from a domain-specific perspective, enhancing interpretability and
enabling informed decision-making. This research sheds light on the potential of ChatGPT and conversational LLMs for drug
editing. It paves the way for a more efficient and collaborative drug discovery pipeline, contributing to the advancement of
pharmaceutical research and development. The source codes can be found in this GitHub repository.

1 Introduction
In recent years, artificial intelligence (AI) tools have made remarkable strides in revolutionizing the field of drug discovery,
offering tremendous potential for accelerating and enhancing various stages of the process [1], including but not limited to virtual
screening [2, 3], lead optimization [4, 5, 6, 7], reaction and retrosynthesis [8, 9, 10], protein folding and inverse folding [11, 12].
However, much of the existing research has predominantly focused on the drug structure information, solely considering the
inherent chemical structure of the drugs as a single modality. In contrast, the drug discovery pipeline involves iterative refining
processes that entail conversations with domain experts to incorporate their feedback, ultimately achieving the desired outcome.
On the other hand, significant advancements have been made in large language models (LLMs) [13, 14, 15], showcasing
exceptional capabilities in understanding human knowledge and exhibiting promising reasoning abilities [16, 17, 18]. Such
observations inspire us to investigate the potential of leveraging LLMs’ conversation and reasoning abilities for AI-assisted
drug discovery in a multi-modality fashion.

Potential of Conversational LLMs for Drug Discovery and Editing. Conversational LLMs exhibit three compelling
factors that make them highly promising for drug discovery. Firstly, these models, such as ChatGPT, are pretrained on a
comprehensive knowledge base, enabling their application across various fields, including drug discovery. This extensive
“world-level” knowledge serves as a robust foundation for drug-related tasks. Second, conversational LLMs possess outstanding
abilities in fast adaptation and generalization. For example, by leveraging few-shot demonstrations, these models can effectively
activate the relevant concepts learned during pretraining, enabling them to deliver more accurate and desired answers [19].
This adaptability and generalization capacity holds immense potential for addressing complex drug discovery challenges and
generating valuable insights. Lastly, interactive communication is a vital characteristic of conversational LLMs. This feature
allows for a dynamic exchange of information, enabling users to incorporate feedback from prior knowledge or domain experts
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Figure 1. The pipeline for ChatDrug with 3 modules. PDDS generates drug editing prompts. ReDF updates the prompts using retrieved
information and domain feedback. Finally, ChatDrug adopts the conversational module for interactive refinement. Further, we demonstrate 3
drug types: small molecules, peptides, and proteins.

into the model. This bidirectional flow of information facilitates self-calibration of the answers, leading to improved accuracy and
relevance in drug discovery tasks. To sum up, these factors collectively highlight the untapped potential of conversational LLMs
for drug discovery tasks. Noticeably, there exists an important and challenging task: drug editing (AKA lead optimization or
protein design). This is a routine task in pharmaceutical companies, and it aims at updating the drug’s substructures [20], related
to certain key tactics in drug discovery like functional group change [21] and scaffold hopping [22, 23]. Traditional solutions
relying on domain experts for manual editing can be subjective or biased [24, 25]. Recent works [26, 27] have started to explore
text-guided drug editing in a multi-modal manner. However, they do not possess conversational potentials like ChatGPT.

Our Approach: ChatDrug. Motivated by the aforementioned factors and challenges, we propose ChatDrug, a framework
aiming to unlock new possibilities and enhance drug editing using contrastive LLMs like ChatGPT. As shown in Figure 1, in the
ChatDrug framework for drug editing, users can activate the conversation with LLMs involving domain knowledge and inject
such retrieved information into the conversation. Specifically, ChatDrug includes the following modules for conversational
drug editing. First, ChatDrug adopts a PDDS (prompt design for domain-specific) module, enabling strong prompt engineering
capability from LLMs. Second, ChatDrug integrates a ReDF (retrieval and domain feedback) module. By leveraging the
vast domain knowledge available, such a ReDF module serves as guidance for prompt updates and augments the model’s
performance in generating accurate outputs. Third, ChatDrug adopts a conversation-based approach, aligning with the iterative
refinement nature of the drug discovery pipeline. Such interactive schema enables a dynamic and collaborative process,
effectively incorporating feedback from domain experts to achieve desired outcomes.

Through our design, ChatDrug demonstrates two appealing properties for drug editing tasks: (1) ChatDrug exhibits an open
vocabulary property, allowing for exploring novel drug concepts beyond a fixed set of pre-defined annotations. The model
can generalize to new drug-related concepts due to the unrestricted nature of natural language. (2) ChatDrug possesses the
compositional property. It can decompose complex concepts, such as multi-objective lead optimization, into simpler attributes
like binding to a new protein and high permeability, enabling handling complicated drug editing tasks. 1

Then to fully verify the effectiveness of ChatDrug, we need to design a benchmark for a wide range of drug editing tasks.
Before going into details, we would like to claim two criteria for the task design: (1) The tasks should involve indeterministic
answers, as they can serve as a source of inspiration for domain experts. (2) The tasks should be able to evaluate computationally
since the lab experiment can be quite laborious and is beyond the discussion of this paper. Following these criteria, we introduce
39 editing tasks over three common drugs: 28 for small molecules, 9 for peptides, and 2 for proteins.

Last but not least, we offer empirical evidence substantiating the capability of ChatDrug for a wide range of drug editing
tasks. Quantitatively, ChatDrug can reach the best performance on 33 out of 39 drug editing tasks compared to seven baselines.
Qualitatively, we further provide 10 case studies (more qualitative results in Appendix G), illustrating that ChatDrug can
successfully identify the important substructures for each type of drug, as follows. (1) For small molecules, ChatDrug is able to
detect the key scaffold for molecule editing, such as changing polar or hydrophobic functional groups for tuning properties like
solubility in water and permeability. (2) For peptides, ChatDrug accurately identifies the protein-specific binding motifs of the

1Note that ChatDrug aims to inspire domain experts rather than replace them. While ChatDrug can propose optimized drugs or novel
attributes, its primary role is to serve as a tool for knowledge exploration. The generated outputs can provide valuable insights and spark
inspiration for domain experts in the drug discovery process.
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peptide sequences. (3) For proteins, ChatDrug can modify sequences with more α-helix or β -strand structures after folding [11,
28]. We additionally illustrate that ChatDrug can provide insightful explanations, serving as a knowledge extraction tool.

2 Preliminaries
Data Structure of Drugs. Drugs [29, 30] refer to certain specific substances that can be adopted to prevent, diagnose, treat, or
relieve symptoms of a disease or abnormal condition. In this paper, we would like to explore the three most common drugs:
small molecules [31], proteins [32], and peptides [33]. Small molecules are sets of atoms connected together through the
covalent bonds. Commonly-used data structures include SMILES (simplified molecular-input line-entry system) strings [34]
and molecular graphs [35, 36, 37]. In ChatDrug, we consider using the SMILES strings. Proteins are complex macromolecules,
and they are composed of 20 amino acids, where each amino acid is a small molecule. Regarding the protein data structure, we
adopt the amino acid sequence (i.e., amino acid string), and the mapping between 20 alphabets and amino acids can be found
in Appendix D. Peptides are short chains of amino acids and can be viewed as a special type of protein. The demonstration of
three data structures can be found in Figure 1.

Drug Editing and Problem Formulation. In this paper, we focus on the drug editing task. Drug editing is also known as
lead optimization or protein design, an important drug discovery task. From the machine learning perspective, drug editing is
a conditional generation problem and can be formulated as follows. Suppose the input drug (SMILES string or amino acid
sequence) is xxxin, and a target or desired property in the textual description is also known as the text prompt xxxt in literature [38, 39].
Then condition on such text prompt, the goal is to obtain an optimized drug as:

xxxout = ChatDrug(xxxin,xxxt). (1)

Then an evaluation metric E(xxxin,xxxout;xxxt) ∈ {True,False} is to check if the edited drugs can satisfy the desired properties
compared to the input drugs, and we will average this over each corresponding task to get the hit ratio. Note that E(·, ·; ·) is
task-specific, as will be discussed in Section 4.

3 Method: ChatDrug Framework
Overview. Our framework is shown in Figure 1. ChatDrug consists of three components: (1)Prompt Design for Domain-
Specific (PDDS) module, (2) Retrieval and Domain Feedback (ReDF) module, and (3) conversation module. Given a task
prompt and input drug, PDDS aims to generate the domain-specific prompt and concatenate it with the input drug to request
ChatGPT for answers. One problem for current LLMs is that it does not fully utilize the prior domain knowledge. Thus, we
design the ReDF module aiming to (1) guide the LLMs to solve this task by retrieving structurally similar examples from the
database and adding examples into the prompt as demonstrations and (2) verify the correctness of the output by using a domain
feedback function. If the output drug is incorrect after ReDF, we then adopt the conversation module to ask LLMs to generate
a new drug iteratively. Note that ChatDrug is a parameter-free scheme and does not require any learning procedure.

3.1 PDDS Module
ChatDrug is proposed to solve a challenging problem: generalization of a universally (w.r.t. data type and data source)
well-trained LLM to solving scientific tasks. In natural language processing (NLP), prompt design or prompt engineering [39]
has proven to be an effective paradigm for generalizing well-trained LLMs to various NLP downstream tasks, including but
not limited to sentiment classification [40, 41], textual entailment [42, 43], text summarization [44, 45, 46].

But the explorations of adapting ChatGPT for drug editing tasks have been lagging behind. In this paper, we are interested
in investigating this problem on the three most common types of drugs: small molecules, protein-binding peptides, and proteins.
Recall that the goal of ChatDrug is (as in Equation (1)): xxxout = ChatDrug(xxxin,xxxt). Here the text prompts xxxt should be specifically
designed to enable the generalization for domain-specific tasks with computationally feasible metrics. Additionally, we want
to highlight that the objectives for drug editing (in xxxt) should be about the high-level property instead of exact substructure
replacement. There are two main reasons, as follows. (1) As discussed in Appendix B, ChatDrug suits better for fuzzy matching
like edited drugs with desired properties. In contrast, exact substructure replacement can be easily and precisely performed by
domain experts, and such replacement may lack the creative inspiration for humans. (2) Property-related questions have an
ambiguous nature, leading to dispersed answers that spark inspiration for domain experts in the drug discovery process.

Then concretely on the prompt design, for small molecules, we consider properties like solubility, drug-likeness, permeability,
and the number of acceptors/donors. For peptides, we consider the properties of peptide-MHC binding. For proteins, we
consider the secondary structure. The text prompts are to explicitly depict the desired properties to be either higher or lower,
and corresponding task prompts will be briefly explained in Section 4. One concrete example for molecule editing is “Can you
make molecule [xxxin] more soluble in water.”, and more details can be found in Appendix E.
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3.2 ReDF Module
To better utilize the domain knowledge, we propose an important module: the ReDF (retrieval and domain feedback) module.
The intuition is that there exists rich domain knowledge in the form of a retrieval database (DB), and ReDF will retrieve the
useful information and inject it into the text prompt, adopting the fascinating language understanding ability of conversational
LLMs.

Specifically, for each input drug xxxin and prompt xxxt , we have a candidate drug x̃xx, which does not satisfy the desired property
change in xxxt . The candidate drug has multiple data resources, depending on the problem setup; in ChatDrug, it is the output
drug with the negative result at each conversation round (will be introduced in Section 3.3). Based on these, ReDF will return a
drug xxxR satisfying:

xxxR = ReDF(xxxin, x̃xx;xxxt) = argmax
xxx′R∈Retrieval DB

⟨x̃xx,xxx′R⟩∧D(xxxin,xxx
′
R;xxxt), (2)

where D(·, ·; ·) ∈ {True,False} is the domain feedback function, and ⟨x̃xx,xxx′R⟩ is the similarity function. We use Tanimoto
similarity [47] for small molecules and Levenshtein distance for peptides and proteins. Notice that here we take D(·, ·; ·) the
same as evaluation metric E(·, ·; ·), while there is some critical difference on the task-specific thresholds, as will be discussed in
the ablation study in Section 4.6. Then the ReDF module injects xxxR into a new prompt, e.g., the updated prompt for a molecule
task is “Your provided sequence [x̃xx] is not correct. We find a sequence [xxxR] which is correct and similar to the molecule you
provided. Can you give me a new molecule?”

We also want to highlight that the domain feedback injection in ReDF is similar to the in-context learning (ICL)
paradigm [48]. Such knowledge injection can result in performance gain [49] not only because of the mapping between ground
truth data-label pairs, but also the format or demonstration of the in-distribution data and label space. In Section 4, we will
conduct an ablation study on ICL.

3.3 Conversation Module
Another appealing attribute of conversational LLMs (like ChatGPT) is their interactive capability. This enables the LLMs to
iteratively update the results by injecting prior knowledge. Inspired by this, we also consider adapting the conversational strategy
for ChatDrug, which can naturally fit the ReDF module as described in in Section 3.2. Then concretely on this conversational
strategy in ChatDrug, first suppose there are C conversation rounds, and we have an edited drug xxxc for the conversation round c.
If xxxc satisfies our condition in the task prompt, then ChatDrug will exit. Otherwise, users will tell ChatDrug that xxxc is wrong,
and we need to retrieve another similar but correct drug from the retrieval DB using ReDF: xxxR = ReDF(xxxin,xxxc), with x̃xx = xxxc
in Equation (2).

To sum up, for each conversation round, we request a drug xxxR similar to xxxc, which will be updated at each conversation
round. The xxxc and xxxR serve as two in-context pairs to feed into ChatDrug, i.e., "The output drug at round [c] is [xxxc], which is
wrong. We find a sequence [xxxR] which is correct and similar. Can you help improve the edited results?" An illustration of this
conversation is in Figure 1.

4 Experiment
Specifications for ChatDrug. In this section, we verify the effectiveness of ChatDrug for drug editing on three types of drugs:
small molecules, peptides, and proteins. Here we select GPT-3.5 in our experiment. We introduce three types of drugs and five
categories of tasks accordingly: task 1xx and 2xx are single- and multi-objective tasks for small molecules (each task further
includes 2 subtasks w.r.t. two thresholds as will be discussed next), task 3xx and 4xx are single- and multi-objective editing
tasks for peptides, and task 5xx is for single-objective protein editing. Due to the space limitation, please check Appendix E
for the full list. Details of implementation and hyperparameters are in Appendix F.

4.1 Text-guided Molecule Property Editing
The first experiment is text-guided molecule editing or molecule optimization. We adopt 16 single-objective tasks and 12
multi-objective editing tasks from MoleculeSTM [27]. These tasks are about the high-level properties of small molecules, like
solubility in water and permeability.

Data: Both the input molecules and retrieval DB are sampled from ZINC [50]: we sample 200 and 10K molecules (with
SMILES strings) from ZINC as input molecules and retrieval DB, respectively. Prompt: The text prompt is "Can you make
molecule [SMILES placeholder] [task requirement]? The output molecule should be similar to the input molecule". The
[task requirement] is the textual description for each specific task, e.g., more soluble in water and with higher permeability.
Evaluation. We take the hit ratio to measure the success ratio of edited molecules, i.e., the percentage of edited molecules
that can reach the desired properties compared to the input molecules. All the properties for small molecules considered here
can be calculated deterministically using RDKit [51]. Another important argument is the threshold ∆: it is a successful hit if
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Table 1. Results on 16 single-objective small molecule editing, and the evaluation is the hit ratio of the property change. For ChatDrug, we
report the mean and std of five random seeds. The best results are marked in bold.

Single Target Property ∆ Random PCA High Variance GS-Mutate
MoleculeSTM

(SMILES)
MoleculeSTM

(Graph)
ChatDrug

(Ours)

101 more soluble in water
0 35.33 ± 1.31 33.80 ± 3.63 33.52 ± 3.75 52.00 ± 0.41 61.87 ± 2.67 67.86 ± 3.46 94.13±1.04
0.5 11.04 ± 2.40 10.66 ± 3.24 10.86 ± 2.56 14.67 ± 0.62 49.02 ± 1.84 54.44 ± 3.99 88.67±0.95

102 less soluble in water
0 43.36 ± 3.06 39.36 ± 2.55 42.89 ± 2.36 47.50 ± 0.41 52.71 ± 1.67 64.79 ± 2.76 96.86±1.10
0.5 19.75 ± 1.56 15.12 ± 2.93 18.22 ± 0.33 12.50 ± 0.82 30.47 ± 3.26 47.09 ± 3.42 70.08±3.44

103 more like a drug
0 38.06 ± 2.57 33.99 ± 3.72 36.20 ± 4.34 28.00 ± 0.71 36.52 ± 2.46 39.97 ± 4.32 48.65±3.39
0.1 5.27 ± 0.24 3.97 ± 0.10 4.44 ± 0.58 6.33 ± 2.09 8.81 ± 0.82 14.06 ± 3.18 19.37±5.54

104 less like a drug
0 36.96 ± 2.25 35.17 ± 2.61 39.99 ± 0.57 71.33 ± 0.85 58.59 ± 1.01 77.62 ± 2.80 70.75±2.92
0.1 6.16 ± 1.87 5.26 ± 0.95 7.56 ± 0.29 27.67 ± 3.79 37.56 ± 1.76 54.22 ± 3.12 30.99±2.66

105 higher permeability
0 25.23 ± 2.13 21.36 ± 0.79 21.98 ± 3.77 22.00 ± 0.82 57.74 ± 0.60 59.84 ± 0.78 56.56±1.84
10 17.41 ± 1.43 14.52 ± 0.80 14.66 ± 2.13 6.17 ± 0.62 47.51 ± 1.88 50.42 ± 2.73 43.08±2.95

106 lower permeability
0 16.79 ± 2.54 15.48 ± 2.40 17.10 ± 1.14 28.83 ± 1.25 34.13 ± 0.59 31.76 ± 0.97 77.35±1.98
10 11.02 ± 0.71 10.62 ± 1.86 12.01 ± 1.01 15.17 ± 1.03 26.48 ± 0.97 19.76 ± 1.31 66.69±2.74

107 more hydrogen bond acceptors 0 12.64 ± 1.64 10.85 ± 2.29 11.78 ± 0.15 21.17 ± 3.09 54.01 ± 5.26 37.35 ± 0.79 95.35±0.62
1 0.69 ± 0.01 0.90 ± 0.84 0.67 ± 0.01 1.83 ± 0.47 27.33 ± 2.62 16.13 ± 2.87 72.60±2.51

108 more hydrogen bond donors 0 2.97 ± 0.61 3.97 ± 0.55 6.23 ± 0.66 19.50 ± 2.86 28.55 ± 0.76 60.97 ± 5.09 96.54±1.31
1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.33 ± 0.24 7.69 ± 0.56 32.35 ± 2.57 76.43±3.32

Table 2. Results on 12 multi-objective small molecule editing, and the evaluation is the hit ratio of the property change. For ChatDrug, we
report the mean and std of five random seeds. The best results are marked in bold.

Two Target Properties ∆ Random PCA High Variance GS-Mutate
MoleculeSTM

(SMILES)
MoleculeSTM

(Graph)
ChatDrug

(Ours)

201 more soluble in water and
more hydrogen bond acceptors

0 – 0 9.88 ± 1.03 8.64 ± 2.06 9.09 ± 1.25 14.00 ± 2.48 27.87 ± 3.86 27.43 ± 3.41 79.62±0.64
0.5 – 1 0.23 ± 0.33 0.45 ± 0.64 0.22 ± 0.31 0.67 ± 0.62 8.80 ± 0.04 11.10 ± 1.80 49.64±2.66

202 less soluble in water and
more hydrogen bond acceptors

0 – 0 2.99 ± 0.38 2.00 ± 0.58 2.45 ± 0.67 7.17 ± 0.85 8.55 ± 2.75 8.21 ± 0.81 51.59±3.79
0.5 – 1 0.45 ± 0.32 0.00 ± 0.00 0.22 ± 0.31 0.17 ± 0.24 2.93 ± 0.30 0.00 ± 0.00 24.92±4.85

203 more soluble in water and
more hydrogen bond donors

0 – 0 2.28 ± 1.15 2.23 ± 1.16 4.44 ± 0.58 13.83 ± 2.95 33.51 ± 4.08 49.23 ± 1.71 89.34±0.96
0.5 – 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 9.98 ± 1.03 23.94 ± 1.09 53.64±5.81

204 less insoluble in water and
more hydrogen bond donors

0 – 0 0.69 ± 0.58 1.96 ± 0.87 1.79 ± 0.66 5.67 ± 0.62 17.03 ± 2.75 14.42 ± 3.43 39.90±3.86
0.5 – 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.59 ± 1.14 3.84 ± 0.71 24.19±2.19

205 more soluble in water and
higher permeability

0 – 0 5.06 ± 1.21 3.53 ± 0.38 4.88 ± 2.21 8.17 ± 1.03 35.69 ± 3.19 39.74 ± 2.26 12.85±2.68
0.5 – 10 1.16 ± 0.68 0.67 ± 0.55 0.66 ± 0.54 0.00 ± 0.00 19.15 ± 0.73 22.66 ± 1.90 10.44±5.75

206 more soluble in water and
lower permeability

0 – 0 12.17 ± 1.05 10.43 ± 2.88 13.08 ± 2.28 19.83 ± 2.46 44.35 ± 0.68 30.87 ± 0.62 65.33±2.16
0.5 – 10 6.20 ± 0.64 6.23 ± 2.31 6.67 ± 0.53 4.83 ± 0.85 28.67 ± 2.22 20.06 ± 1.26 52.9±2.23

the difference between input and output properties is above the threshold. Baselines: The baselines are from [27], based on
MegaMolBART [5], a pretrained auto-regressive model. Baselines include Random, PCA, High-Variance, GS-Mutate, and
MoleculeSTM with SMILES or Graph as the molecule representation.

Observation. We illustrate the descriptions and the single- and multi-objective editing results in Tables 1 and 2, respectively.
The threshold ∆ for each specific task is specified in Table 1; for multi-objective editing tasks in Table 2, the threshold ∆ has
two values corresponding to the two tasks. We further conduct an ablation study on the thresholds of ReDF in Section 4.6. We
can observe that ChatDrug can reach the best performance on 22 out of 28 tasks, 20 of which possess over 20% hit ratio than
the second-best method. Table 3 visualizes examples of 6 molecule editing tasks where ChatDrug successfully generates output
molecules xxxout with desirable property change, while the output of the first conversation round xxx1 fail. For example, in Table 3a,
xxx1 converts a methyl group to a propyl which incorrectly yields a less soluble molecule. Through conversational guidance,
ChatDrug changes its output xxxout to an aminoethyl group, successfully fulfilling the task. In Table 3f, xxx1 installs a phenyl urea
to the molecule, which brings lower permeability as requested but makes the molecule less soluble. In contrast, ChatDrug is
able to replace the hydrophobic aromatic substituent with a hydrophilic amide in xxxout, consistent with the requirement of higher
solubility in water.

4.2 Text-guided Immunogenic Binding Peptide Editing
The second task is text-guided immunogenic binding peptide editing. Immunogenic peptides are promising therapeutic
targets for the personalized vaccine, which triggers a person’s immune system, e.g., CD8+ T cells, to fight diseases [52, 53].
Immunogenic peptides are typically degraded from intracellular antigens. To activate CD8+ T cell immune responses, these
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Table 3. Visualization of six small molecule editing tasks. The blue regions , red regions , and green regions correspond to the edited
substructures in the input molecule xxxin, intermediate molecule xxx1 for the 1st conversation round, and the output molecule xxxout, respectively.

(a) Prompt for 101 : more soluble in water (b) Prompt for 102: less soluble in water

Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout

LogP: 1.46 LogP: 2.24 LogP: 0.40 LogP: 3.29 LogP: 2.49 LogP: 4.31

(c) Prompt for 105: higher permeability (d) Prompt for 106: lower permeability

Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout

tPSA: 68 tPSA: 81 tPSA: 42 tPSA: 55 tPSA: 55 tPSA: 79

(e) Prompt for 205: more soluble in water and higher permeability (f) Prompt for 206: more soluble in water and lower permeability

Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout

LogP: 3.59, tPSA: 114 LogP: 3.59, tPSA: 114 LogP: 2.83, tPSA: 93 LogP: -1.83, tPSA: 116 LogP: -0.37, tPSA: 125 LogP: -2.42, tPSA: 146

peptides must first bind to Major Histocompatibility Complex (MHC) proteins, forming peptide-MHC complexes which are
then presented on the surface of infected or malignant cells to interact with the T cells. Although the peptide-MHC binding
process is critical for immune response, it is highly specific, making editing known peptides to improve their binding affinity to
specific MHC proteins a challenging yet crucial task for peptide engineering and discovery. Recall that peptides are typically
short protein chains, with most peptides having less than 16 amino acids.

Data: In this experiment, we use the experimental dataset of peptide-MHC binding affinities [54]. This dataset contains
149 human MHC Class I proteins (alleles) and 309K peptides. We follow existing works [55] on using the 30 common MHC
proteins (alleles) and we randomly pick one as the source allele and one or more alleles as the target alleles. Notice that for
single-allele tasks, 30 MHC proteins can be further divided into 3 categories: HLA-A, HLA-B, and HLA-C; we make sure
that the sampled source and target alleles are from different categories. Then we sample 500 peptides from the source allele
types. For the retrieval DB, the experimental data of the target allele(s) are adopted. The sampled MHC types are further
specified in Appendix E. Prompt: We expect the edited peptides can bind to the target MHC protein(s), so the prompt template
is We want a peptide that binds to [target allele]. We have a peptide [peptide sequence] that binds to [source allele], can you
help modify it? The output peptide should be similar to the input peptide." Evaluation: The actual bindings require wet-lab
experiments, which are expensive and prohibited for large scaled evaluation. Following existing works [56, 55], we leverage
the MHCflurry2.0 [54] as a pseudo-oracle to predict the peptide-MHC binding affinity. MHCflurry2.0 is the state-of-the-art
method enabling accurate estimating of the binding affinity of peptides with MHC proteins. The success of the peptide editing
needs to satisfy two conditions: (1) The output peptide should have a higher binding affinity with the target allele compared to
the input peptide; (2) The binding affinity of the output peptide and target allele should be above a certain threshold. Here we
take the threshold as one-half of the average binding affinity of experimental data on the target allele. Baselines: Since there is
no existing approach for text-guided binding peptide editing, we use random mutation as the baseline, i.e., conducting random
mutation on the amino acid sequence of the input peptides.

Observation. We illustrate the single- and multi-objective editing results in Table 4. We can observe that ChatDrug reaches
the best performance over all 9 tasks compared to the random mutation baselines. We further visualize peptides using position
weight matrices (PWMs) in Figure 2. PWM has been widely used for the visualization of protein motifs (patterns), and it plots
the distribution of each amino acid at the corresponding position. Thus, more important motifs with higher probabilities will be
marked in higher alphabets. According to Figure 2, the edited or optimized peptides follow similar patterns to the experimental
data presented. For instance, for task 301, the edited peptides can successfully upweight the alphabet E (glutamic acid) at
position 2; similarly, for alphabet A at position 2 and L at position 9 for task 302. These results indicate that the binding motifs
of the edited peptides are highly correlated with the real binding motifs derived from experimental data.
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Table 4. Results on six single-objective and three multi-objective peptide editing tasks. Random Mutation-R for R mutated positions. The
evaluation is the hit ratio of the increased binding affinity score. The best results are marked in bold. Due to the space limitation, please
check Appendix E for the text prompt of each task.

single-objective editing multi-objective editing

301 302 303 304 305 306 401 402 403

Random Mutation-1 1.80 14.40 1.80 1.80 12.00 5.60 3.20 0.80 0.40
Random Mutation-2 1.80 13.40 2.80 3.00 8.40 4.40 2.20 0.60 1.20
Random Mutation-3 1.80 9.40 2.40 4.20 9.00 3.80 3.00 0.60 0.80
ChatDrug 58.60 69.34 58.52 55.11 64.40 62.73 53.71 41.45 54.71

(a) Motifs of input peptides for 301. (b) Motifs of edited peptides for 301. (c) Motifs of experimental peptides for 301.

(d) Motifs of input peptides for 302. (e) Motifs of edited peptides for 302. (f) Motifs of experimental peptides for 302.

Figure 2. Visualization of two peptide editing tasks using PWM. The x-axis corresponds to the position index, while the y-axis
corresponds to the distribution of each amino acid (in alphabets) at each position.

4.3 Text-guided Protein Secondary Structure Editing

Table 5. Results on two protein editing tasks. Random Mutation-R for R
mutated positions. The evaluation is the hit ratio of increased secondary
structures accordingly. The best results are marked in bold.

501 more helix 502 more strand

Random Mutation-1 18.32 17.35
Random Mutation-2 24.95 19.69
Random Mutation-3 26.90 21.44
ChatDrug 34.79 51.38

Last but not least, we consider text-guided protein sec-
ondary structure editing (PSSE) [57]. For protein 1D
sequence, it can fold into the 3D structure, as shown
in Figure 1. Specifically, proteins possess four levels
of structures, and secondary structures are fundamental
building blocks, which are local folding patterns stabi-
lized by hydrogen bonds. Typical secondary structures
include α-helix and β -sheet, consisting of β -strands.
Here we are interested in two PSSE tasks, i.e., using
ChatDrug to edit protein sequences with more helix or
strand structures after folding [11, 28].

Data: TAPE [58] is a benchmark for protein sequence property prediction, including the secondary structure prediction
task. We take the test dataset and training dataset as the input proteins and retrieval DB, respectively. Prompt: For an input
protein sequence [protein sequence], can you modify it with more helix/strand structures? Baselines: Same with peptide
editing, we adopt random mutation as baselines. Evaluation. For evaluation, we adopt the state-of-the-art pretrained secondary
structure prediction model, i.e., ProteinCLAP-EBM-NCE model from ProteinDT [26]. The hit condition is if the output protein
sequences have more secondary structures than the input sequences.

Observation. Because we only consider two types of secondary structures in PSSE, the tasks are single-objective tasks.
As shown in Table 5, we can tell the large performance gain by ChatDrug. We further visualize cases on how ChatDrug
successfully edits the proteins with more helix/strand structures. We adopt pretrained ESMFold [28] for protein folding (protein
sequence to protein structure prediction) and then plot the protein structures using PyMOL [59]. We show two examples in
Figure 3. As circled in the blue regions in Figures 3a and 3b, the edited proteins possess more helix structures and strand
structures, respectively. More visualization can be found in Appendix G.

4.4 Ablation Study on Comparison with Zero-shot and In-context Learning
There are two important modules for ChatDrug: conversation for result refinement and the ReDF for knowledge retrieval.
Thus in this ablation study, we would like to explore the effect of such two modules. The first case is zero-shot prediction.
It is indeed ChatDrug with c = 0, i.e., without conversation or ReDF. On the other hand, in-context learning (ICL) can be
treated as ChatDrug equipped with the ReDF module but without any conversational round. Concretely, the retrieved drug
is xxxR = ReDF(xxxin,xxxin), with x̃xx = xxxin in Equation (2). The text prompt for zero-shot and ICL are “Can you edit the molecule
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(a) Protein editing with more helix structures. (b) Protein editing with more strand structures.

Figure 3. Visualization of two protein editing tasks. For the protein secondary structures, the α-helix is marked in red, and β -sheet is
marked in yellow. The edited regions before and after ChatDrug are marked in blue circles.

Table 6. Ablation studies on comparison with in-context learning (ICL) and conversation rounds on molecule editing. The threshold is the
loose threshold with ∆ = 0, and the random seed is 0.

C 101 102 103 104 105 106 107 108 201 202 203 204 205 206

ICL (few-shot) 52.11 75.45 37.76 46.23 30.64 42.86 54.97 69.81 59.88 39.86 53.45 49.36 37.42 42.77

ChatDrug

C = 0 (zero-shot) 78.26 71.35 16.15 32.12 16.04 8.33 59.41 63.16 43.09 0.52 54.49 0.53 2.11 22.22
C = 1 89.56 93.64 48.35 61.62 47.93 56.97 90.00 93.08 72.29 36.26 86.14 30.00 9.44 54.14
C = 2 93.37 97.11 52.81 67.93 55.76 78.40 95.57 98.10 80.37 48.52 90.18 39.88 12.72 67.23
C = 3 96.11 97.69 55.11 75.54 59.51 87.65 98.09 98.73 83.75 60.49 92.02 50.32 15.48 76.74
C = 4 96.67 97.69 59.20 78.14 63.35 94.41 98.09 98.73 86.79 68.32 94.41 57.42 22.36 80.00
C = 5 97.22 97.69 59.77 83.06 65.84 95.03 99.36 98.73 89.17 70.19 94.41 63.40 25.32 81.55

Table 7. Ablation studies on thresholds in domain feedback function D with two conversational rounds. The evaluation function E uses the
strict threshold. We report the mean of five seeds, and stds are in Appendix H.

101 102 103 104 105 106 107 108 201 202 203 204 205 206

loose threshold 80.73 41.00 11.23 16.94 33.16 53.59 14.96 21.93 20.14 7.96 17.93 5.79 3.66 41.04
strict threshold 88.67 70.08 19.37 30.99 43.08 66.69 72.60 76.43 49.64 24.92 53.64 24.19 10.44 52.9

[xxxin] to be more soluble in water?” and ‘‘We know that [xxxR] is similar to [xxxin] and is more soluble in water. Can you edit the
molecule [xxxin] to be more soluble in water?” The results can be found in Table 6. As we can see, both ChatDrug and ICL are
better than the zero-shot prediction, and conversational refinement performs best on all 14 tasks.

4.5 Ablation Study on the Number of Conversation Rounds in ChatDrug
In ChatDrug, the number of conversation rounds is an important hyperparameter. Here we conduct an ablation study on small
molecules to test its effectiveness. The results are in Table 6. For molecule editing tasks tested here, the performance of ChatDrug
tends to converge after C = 2 conversation rounds. This motives us taking C = 2 for the main results in Tables 1, 2, 4 and 5.

4.6 Ablation Study on the Thresholds in Feedback Condition Function
In ChatDrug, another important factor is the domain feedback function D(·, ·; ·). For molecule editing, we discuss two thresholds
when evaluating with E(·, ·; ·). One is ∆ = 0 (loose condition), and the other is ∆ > 0 (strict condition), where the ∆ value is
different for each task. Here we conduct ablation studies on two conditions for feedback function D. The results are in Table 7,
and the observation is that ChatDrug with the stricter threshold in feedback condition can lead to higher accuracy by a large
margin. Note that for each task in Tables 1 and 2, we keep the same threshold for D and E.

4.7 Ablation Study on the Similarity Between Input and Output Drugs
We plot the distribution of similarities between input molecules xxxin and retrieval xxxR, intermediate xxx1, and output molecules xxxout
using ChatDrug. The similarity distributions of three tasks are in Figure 4, and more results are in Appendix G. One interesting
observation is that the similarities between xxxin and intermediate molecules are quite xxx1, but the hit ratio is the lowest among the
three. Then we plot the similarity xxxin and xxxR, where the similarities are comparatively low, yet the hit ratio is the highest. This
reveals that the ReDF module is able to explore the chemical space to search for more optimal solutions. Then by utilizing such
retrieved information and repeating C conversational rounds, ChatDrug will do a trade-off between the similarity with input
molecules xxxin and knowledge explorations, which ultimately leads to more promising results as in xxxout.
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(a) Task 101 more soluble in water (b) Task 102 less soluble in water (c) Task 107 more hydrogen bond acceptors

Figure 4. Similarity distribution between input molecules xxxin and retrieval xxxR, intermediate xxx1, and output molecules xxxout. We pick up
three tasks on small molecules for visualization, and more results are in Appendix G.

4.8 Why ChatDrug Works? Knowledge Extraction
Figure 5. Knowledge extraction of ChatDrug.

1. Introducing polar functional groups such as hydroxyl (-OH), 
amino (-NH2), or carboxyl (-COOH) groups.
2. Replacing nonpolar groups such as alkyl chains or halogens 
with polar functional groups.
3. Modifying aromatic rings by introducing polar substituents such 
as hydroxyl or amino groups.
4. Introducing cyclic structures that can enhance stability and 
solubility.
5. Increasing the number of polar functional groups in the 
molecule.

It is important to note that these rules are not exhaustive and may 
not apply to all molecules. The solubility of a molecule in water is 
influenced by a variety of factors, including its size, shape, and 
overall chemical structure. Therefore, each molecule may require a 
unique approach to increase its solubility in water.

Can you generate rules for solving small molecule 
editing toword more soluble in water based on 
above examples?

We are also interested in understanding how ChatDrug can
work. As shown in Figure 5, we illustrate a case study on
small molecule editing. It can be observed that ChatDrug
can do knowledge extraction: for a specific task on editing
molecules to be more soluble in water, ChatDrug can extract
the reasonings and summarize them into five rules. This
gives us the confidence that the success of ChatDrug is its
ability of domain interpretation. We conduct further ablation
studies like knowledge extraction without the context as a
control experiment in Appendix H.

Although ChatDrug can extract domain-specific infor-
mation for the editing tasks, we do notice a minor issue: the
redundancy among knowledge. As shown in Figure 5, the
extracted rules 1, 3, and 5 are all centered on introducing
polar functional groups for solubility in water, despite from
slightly different angles. In Appendix H, we continue to ex-
plore how ChatDrug can play a positive role in knowledge summarization, aiming to alleviate this knowledge redundancy issue.

5 Limitation and Conclusion
In this work, we present ChatDrug, a framework that utilizes ChatGPT for drug editing tasks. We build up a benchmark on 39
tasks over three main types of drugs: small molecules, peptides, and proteins. Empirical results have verified the effectiveness
of ChatDrug on these drug editing tasks, and the visual analysis further qualitatively illustrates how ChatDrug can modify
the key substructures for the target properties. Thus, we posit that using conversational LLMs for drug editing is a promising
direction for both the machine learning and drug discovery communities.

Meanwhile, ChatDrug also possesses certain limitations. One limitation is that ChatDrug is not good at understanding the
complex structures of drugs, i.e., the 3D geometries. This may require a more profound utilization of geometric modeling.
Another limitation is that ChatDrug requires certain conversational rounds to reach strong performance. An ideal solution is
to reduce such computational costs using the knowledge summarization ability of ChatGPT, and we leave this for future work.
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A Examples of ChatDrug
Here we show three concrete examples of the editing tasks on small molecules, peptides, and proteins.

Sure, here are five molecules in SMILES that are similar to the 
input molecule but have increased solubility in water and more 
hydrogen bond donors:

- O=C(NC[C@H]1CCCO1)c1ccccc1N1CCOCC1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CCNCC1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CC(O)CC1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CCC(O)C1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CC(O)(C)C1=O

Your provided sequence 
O=C(NC[C@H]1CCCO1)c1ccccc1N1CCOCC1=O is 
not correct. We find a sqeuence CCOC-
C(=O)Nc1ccccc1C(=O)NC[C@H]1CCCO1 which is 
correct and similar to the molecule you provided. 
Can you give me a new molecule?

I apologize for the mistake. Here is a new molecule that is similar 
to the input molecule but has increased solubility in water and 
more hydrogen bond donors:

- O=C(NC[C@H]1CCCO1)c1ccccc1N1CC(O)C(O)C1=O

This is correct.

Can you make molecule 
O=C(NC[C@H]1CCCO1)c1ccccc1N1CCCC1=O 
more soluble in water and more hydrogen bond 
donors? The output molecule should be similar to 
the input molecule. Give me five molecules in 
SMILES only and list them using bullet points. No 
explanation is needed.

Figure 6. Example of small molecule editing (task 203).

We want a peptide that binds to HLA-B*44:02. We 
have a peptide AAASHFFNL that binds to 
HLA-C*16:01, can you help modify it? The output 
peptide should be similar to input peptide. Please 
provide the possible modified peptide sequence 
only. No explanation is needed.

AAASHFFSL

Your provided sequence AAASHFFSL is not 
correct. We find a sqeuence AEAYHFFIL which is 
correct and similar to the peptide you provided. 
Can you give me a new peptide?

Sure, based on the sequence AEAYHFFIL, a possible modified 
peptide sequence that may bind to HLA-B*44:02 could be 
AEAYHFFSL.

This is correct.

Figure 7. Example of peptide editing (task 301).
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We have a protein GAPVPVDENDEGLQRALQFAMAEYN-
RASNDKYSSRVVRVISAKRQLVSGIKYILQVEIGRT-
TCPKSSGDLQSCEFHDEPEMAKYTTCTFVVYSIPWLNQIK
LLESKCQ. Can you update modify it by making more 
amino acids into the helix structure (secondary 
structure)? The input and output protein sequences 
should be similar but different. No explanation is needed.

Yes, I can modify the protein sequence to increase the helix 
structure. One way to do this is by introducing more amino acids 
with helix-forming properties into the sequence. 
The changes made are as follows:

- Replaced the amino acid "E" at position 7 with "L", which has a 
higher propensity for helix formation.
- Replaced the amino acid "A" at position 10 with "L", which also 
has a higher propensity for helix formation.
- Replaced the amino acid "N" at position 14 with "L", which has a 
high propensity for helix formation.
...
...
...
The resulting protein sequence is:
GAPVPVLLNLGLQLLLQFLLLEYNRASNDKYLLRVVLLVISLLQLVS-
GIKYILQVEIGRT-
TCPKLLGDLQLCLFHDLPEMLKYTTCTFVVYSIPWLNQLKLLESKCQ

This sequence should have an increased tendency to form 
alpha-helices due to the higher proportion of helix-forming amino 
acids.

This is correct

Figure 8. Example of protein editing (task 501).
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B More Discussions on ChatDrug
In this section, we will discuss three aspects of ChatDrug and the general conversational LLMs for drug discovery: the scope,
the main attributes, and the key challenges and guidelines when using ChatDrug.

Scope of ChatDrug. The first natural question raised is What are the feasible drug discovery tasks for ChatDrug? To
answer this question, we need to reiterate the conversational LLM’s feasibility for drug discovery tasks. There have been a
series of works [60, 61, 62, 63, 64] exploring the LLMs for small molecule and protein discovery, ranging from molecule
representation to text-to-molecule generation. These are important machine learning tasks, revealing domain data’s (conditional)
distribution learning ability. However, there exists another important task in real scenarios: drug editing (a.k.a. lead optimization
or protein design in domain applications). This is a routine task in pharmaceutical companies, and it aims at updating the
molecule’s substructures [20], related to certain key tactics in drug discovery like functional group change [21] and scaffold
hopping [22, 23]. Traditional solutions relying on domain experts for manual editing can be subjective or biased [24, 25]. To
alleviate this issue, multi-modal models with LLMs provide a promising solution, and recent works [26, 27] have started to
explore text-guided drug editing or controllable drug generation. However, these works are domain-specific (e.g., only for small
molecules or proteins) and do not possess conversational potentials like ChatGPT. In contrast, ChatDrug possesses outstanding
generalization abilities to various domain tasks and enables conversational refinement in drug editing tasks. 2

Attributes of ChatDrug. We conclude three fundamental attributes of ChatDrug: open vocabulary, compositionality, and
inspiration. (1) Open vocabulary means ChatDrug is not limited to a fixed set of pre-defined drug-related annotations. Instead,
it can generalize to novel drug concepts due to the unbound vocabulary depicted by the natural language. (2) Compositionality
means we can express a complex concept by decomposing it into simple concepts. (3) Inspiration means the position of
ChatDrug is to inspire domain experts with knowledge exploration but not replace them. A concrete example illustrating
these three attributes is multi-objective lead optimization. We can use natural language to guide us to generate an entirely new
attribute of a molecule (open vocabulary); meanwhile, the new attribute is composed of multiple simple attributes, such as
binding to a new protein and high permeability (compositionality). Finally, such an optimized molecule may not be directly
used for real scenarios, but it can provide insights for domain experts in drug design (inspiration).

Challenges and Guidelines when Using ChatDrug. Now that we have decided to narrow ChatDrug to the drug editing
tasks, we need to scrutinize more details before deploying it. With careful reconsidering, we summarize two main challenges
that we need to keep in mind. (1) ChatDrug can do better in fuzzy searching than exact searching in drug editing tasks.
Drug editing tasks, or drug controllable generation, can cover various topics. However, one critical difference between
ChatDrug and other LLMs in vision tasks is that ChatDrug or drug discovery is a scientific problem while the image and
video [67, 68, 69, 70, 71] generation is more of an artistic endeavor. Namely, for text prompts like “I want to add an isobutyl
group on the 3-position of the aromatic ring in Aspirin”, domain experts can do this precisely, and thus the impact of ChatDrug
is limited here. However, for other tasks like “I want to modify this molecule to be more soluble in the water”, the results are
not deterministic, and this is where LLMs can act as a more useful tool to inspire the domain experts. These two types of
text prompts are called exact searching and fuzzy searching, respectively. We conclude that ChatDrug is more beneficial for
the fuzzy searching problem. (2) ChatDrug relies on the pretrained LLMs, initially pretrained on a large-scale and universal
corpus. Thus, there is a noticeable domain shift when applying them to domain-specific tasks. However, as will be shown
in Sections 3 and 4, the existing LLMs illustrate the interpretation ability of the domain knowledge. Though such interpretation
is preliminary, we believe that ChatDrug is an inspiring and promising direction for future usage in both communities.

2We acknowledge that there have been certain parallel works [65, 66] exploring conversational LLMs on reaction and synthesis tasks.
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C Related Work
C.1 Large Language Models
Large language models (LLMs), which predict subsequent words in a sentence, have facilitated the generation of human-like
text. Initially, neural language models, such as Recurrent Neural Networks (RNNs) [72, 73], Long Short-Term Memory
(LSTM) [74, 75], and Gated Recurrent Units (GRU) [76], were developed. These models processed text sequentially, allowing
them to capture some contextual nuances. However, they struggled with long-range dependencies and computational efficiency.
This challenge paved the way for the transformative architecture of Transformers [77], equipped with an attention mechanism.
Transformers revolutionized the handling of long-range dependencies, offering a significant improvement over RNNs and
LSTMs by enabling parallel computation across sentences. The introduction of the Transformer architecture marked a
significant shift in NLP, laying the foundation for influential models. It enables the development of BERT [14], T5 [38],
Generative Pre-trained Transformer (GPT) [78] and so on. GPT-3 [13], for example, has 175 billion parameters and can
generate human-like text that is almost indistinguishable from human writing. Despite the advancements, large models such
as GPT-2 [79], GPT-3 [13], T5 [38], BERT [14] faced difficulties in consistently producing desired outputs, specifically in
adhering to natural language instructions and executing real-world tasks. This gap led to the exploration of instruction-tuning
methods, aiming to enhance the zero-shot and few-shot generalization capabilities of LLMs. Instruction-tuned counterparts,
such as ChatGPT, FLAN-T5 [80], FLANPaLM [80], and OPT-IML [81], were born from this endeavor. Among these, ChatGPT
stands out. It was initially trained on a substantial internet text corpus, followed by a unique fine-tuning process: AI trainers
simulated a range of conversational scenarios, assuming both user and AI assistant roles. Reinforcement learning from human
feedback (RLHF) [82] was later incorporated to further boost the system’s performance. In this paper, we aim to leverage the
large language model to explore its functionality in the drug editing domain.

C.2 Multi-modal Modeling for Small Molecule Discovery
Small molecules can be roughly categorized into two big modalities [60, 27]: the internal chemical structure and external
description. The internal chemical structure refers to the molecule’s structure information, e.g., 1D sequence (SMILES) [34],
2D molecular graph [83, 84, 35, 85], and 3D geometric graph [86, 87, 88, 89]. On the other hand, the external description
depicts the high-level information of molecules, e.g., the molecule’s binding affinity with potential targets, and the functionalities
of molecules.

Recently, a research line has been starting to bridge the gap between such two modalities. KV-PLM [60] first applies the
joint masking auto-encoding on the SMILES string and biomedical textual description. Text2Mol [62] conducts contrastive
learning between molecular graph and text data for retrieval tasks between modalities. MolT5 [61] does the translation between
SMILES and textual annotation of molecules in a mutual way. MoMu [64] also conducts contrastive learning while it considers
both the retrieval and molecule captioning and text-to-molecule tasks. MoleculeSTM [27] proposes a larger molecule-text
dataset and highlights the text-guided molecule editing tasks. Such tasks reveal the potential of LLMs for more realistic drug
discovery tasks.

C.3 Multi-modal Modeling for Peptide and Protein Discovery
There have also been several works exploring multi-modal modeling for protein discovery. ProGen [90] is a text-to-sequence
protein design framework, but it is fixed to a predefined set of texts, which can be treated with indices. Thus it is not open-
vocabulary and lacks the generalization ability to novel textual descriptions. Besides, the predefined texts and indices cannot
sufficiently describe the protein functions [91]. ProteinDT [26] is a recent work that addresses this issue with free-text protein
design. A parallel work is Chroma [92], and it conducts text-guided protein editing on the backbone structure instead of the
sequence.
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D Data Specification
Drugs like small molecules and proteins can have multiple modalities. Specifically, small molecules can be naturally represented
as 1D sequence, 2D molecular graph, and 3D geometric graph, biological knowledge graph, and textual description. The first
three data structures capture the internal chemical structure information, while the last two data structures provide a higher-level
view of the molecule’s functionalities (e.g., the molecule’s interactions with other proteins or diseases.).

There are 20 amino acids in nature, as listed below:

Table 8. 20 amino acids and the corresponding abbreviations.

Amino Acid Alphabet

Isoleucine I
Valine V
Leucine L
Phenylalanine F
Cysteine C
Methionine M
Alanine A
Glycine G
Threonine T
Serine S
Tryptophan W
Tyrosine Y
Proline P
Histidine H
Asparagine N
Asparatic acid D
Glutamine Q
Glutamic acid E
Lysine K
Arginine R
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E Task Specification
Here we present all the task specifications and prompts used in our experiments.

• We list the template of prompts of two stages of PDDS and ReDF in Tables 9, 11 and 13 for small molecules, peptides,
and proteins, respectively.

• We list the corresponding task requirement and allele type information in Tables 10, 12 and 14.
• We further list the prompts of in-context learning in Table 15 for reference.

Table 9. Prompt for small molecule editing. The task requirement can be found in Table 10.

Task Module Prompt

1xx
(101-108)

PDDS
Can you make molecule [input SMILES] [task requirement 1]? The output molecule should be similar
to the input molecule. Give me five molecules in SMILES only and list them using bullet points. No
explanation is needed.

ReDF
Your provided sequence [output SMILES] is not correct. We find a sequence [retrieved SMILES]
which is correct and similar to the molecule you provided. Can you give me a new molecule?

2xx
(201-206)

PDDS

Can you make molecule [input SMILES] [task requirement 1] and [task requirement 2]? The output
molecule should be similar to the input molecule. Give me five molecules in SMILES only and list
them using bullet points. No explanation is needed.

ReDF
Your provided sequence [output SMILES] is not correct. We find a sequence [retrieved SMILES]
which is correct and similar to the molecule you provided. Can you give me a new molecule?

Table 10. Task requirement for small molecule editing, corresponding to Table 9.

Task ID Task Requirement 1 Task Requirement 2

101 more soluble in water None
103 more like a drug None
104 less like a drug None
105 higher permeability None
106 lower permeability None
107 more hydrogen bond acceptors None
108 more hydrogen bond donors None

201 more soluble in water more hydrogen bond acceptors
202 less soluble in water more hydrogen bond acceptors
203 more soluble in water more hydrogen bond donors
204 less soluble in water more hydrogen bond donors
205 more soluble in water higher permeability
206 more soluble in water lower permeability
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Table 11. Prompt for peptide editing. The source allele target type and target allele type can be found in Table 12.

Task Stage Prompt

3xx
(301-306)

PDDS

We want a peptide that binds to [target allele type 1]. We have a peptide [input peptide] that binds to
[source allele type], can you help modify it? The output peptide should be similar to input peptide.
Please provide the possible modified peptide sequence only. No explanation is needed.

ReDF
Your provided sequence [output peptide] is not correct. We find a sequence [retrieved peptide] which
is correct and similar to the peptide you provided. Can you give me a new peptide?

4xx
(401-403)

PDDS

We want a peptide that binds to [target allele type 1] and [target allele type 2]. We have a peptide
[input peptide] that binds to [source allele type], can you help modify it? The output peptide should be
similar to input peptide. Please provide the possible modified peptide sequence only. No explanation
is needed.

ReDF
Your provided sequence [output peptide] is not correct. We find a sequence [retrieved peptide] which
is correct and similar to the peptide you provided. Can you give me a new peptide?

Table 12. Target allele type and source allele type for peptide editing, corresponding to Table 11

Task ID Source Allele Type Target Allele Type 1 Target Allele Type 2

301 HLA-C*16:01 HLA-B*44:02 None
302 HLA-B*08:01 HLA-C*03:03 None
303 HLA-C*12:02 HLA-B*40:01 None
304 HLA-A*11:01 HLA-B*08:01 None
305 HLA-A*24:02 HLA-B*08:01 None
306 HLA-C*12:02 HLA-B*40:02 None

401 HLA-A*29:02 HLA-B*08:01 HLA-C*15:02
402 HLA-A*03:01 HLA-B*40:02 HLA-C*14:02
403 HLA-C*14:02 HLA-B*08:01 HLA-A*11:01

Table 13. Prompt of Conversation Module for protein editing. The task requirement can be found in Table 14.

Task ID Prompt

5xx
(501-502)

PDDS
We have a protein [input protein]. Can you update modify it by [task requirement]? The input and
output protein sequences should be similar but different. No explanation is needed.

ReDF
Your provided sequence [output protein] is not correct. We find a sequence [retrieved protein] which
is correct and similar to the protein you provided. Can you give me a new protein?

Table 14. Task requirement for protein editing, corresponding to Table 13.

Task ID Task Requirement

501 making more amino acids into the helix structure (secondary structure)
502 making more amino acids into the strand structure (secondary structure)

20/32



Table 15. Prompt of in-context learning.

Task Prompt

1xx
(101-108)

Can you make molecule [input SMILES] [task requirement]? The output molecule should be similar to the input
molecule. We have known that similar molecule [retrieved SMILES] is one of the correct answers. Give me
another five molecules in SMILES only and list them using bullet points. No explanation is needed.

2xx
(201-208)

Can you make molecule [input SMILES] [task requirement 1] and [ask requirement 2]? The output molecule
should be similar to the input molecule. We have known that similar molecule [retrieved SMILES] is one of the
correct answers. Give me another five molecules in SMILES only and list them using bullet points. No explanation
is needed.

3xx
(301-306)

We want a peptide that binds to [target allele type]. We have a peptide [input peptide] that binds to [source allele
type], can you help modify it? The output peptide should be similar to input peptide. We have known that similar
peptide [retrieved peptide] is one of the correct answers. Please provide another possible modified peptide sequence
only. No explanation is needed.

4xx
(401-403)

We want a peptide that binds to [target allele type 1] and [target allele type 2]. We have a peptide [input peptide]
that binds to [source allele type], can you help modify it? The output peptide should be similar to input peptide. We
have known that similar peptide [retrieved peptide] is one of the correct answers. Please provide another possible
modified peptide sequence only. No explanation is needed.

5xx
(501-502)

We have a protein [input protein]. Can you update modify it by [task requirement]? The input and output protein
sequences should be similar but different. We have known that similar protein [retrieved protein] is one of the
correct answers. Please provide another possible modified protein only. No explanation is needed.
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F Implementation and Hyperparameters
F.1 ChatGPT Settings
We implement our experiments with ChatGPT through OpenAI API. Specifically, we utilize the model gpt-3.5-turbo under
ChatCompletion function, which is the standard approach for deploying ChatGPT. To facilitate the replication of our experi-
ments, we set the temperature to 0, ensuring deterministic output. Additionally, we observe that ChatGPT often generates
repeated sequences or fails to stop generating sequences for chemistry-related questions. To mitigate this issue, we set the
f requency_penalty to 0.2. Moreover, for improved adaptation to different domains, it is advisable to incorporate a system role
prompt within ChatGPT. In our case, we utilize the following prompt: "You are an expert in the field of molecular chemistry."

F.2 Experiments Threshold for Small Molecule Editing
Following MoleculeSTM [27], in our small molecule editing experiments, we utilize two different threshold settings: a loose
threshold and a strict threshold. For the main results in Tables 1 and 2, we keep the same threshold for domain feedback
function D and evaluation function E. The threshold ∆ used for each small molecule editing task is shown in Table 16, which
holds for both functions.

Table 16. Threshold ∆ for each small molecule editing task, ∆1 and ∆2 represent the threshold of task requirement 1 and task requirement
2, respectively.

Task ID Loose Threshold Strict Threshold

∆1 ∆2 ∆1 ∆2

101 0 – 0.5 –
102 0 – 0.5 –
103 0 – 0.1 –
104 0 – 0.1 –
105 0 – 10 –
106 0 – 10 –
107 0 – 1 –
108 0 – 1 –

201 0 0 0.5 1
202 0 0 0.5 1
203 0 0 0.5 1
204 0 0 0.5 1
205 0 0 0.5 10
206 0 0 0.5 10

F.3 Experiments Threshold for Peptide Editing
For the peptide editing task, as mentioned in Section 4, we take the threshold as one-half of the average binding affinity of
experimental data on the target allele. The original average binding affinity of each experimental data can be found in the
source code.

F.4 Evaluation Metric
We evaluate the performance of ChatDrug by hit ratio, which is computed by the following equation:

Hit Ratio =
Number of Success Sequence Editing

Number of Valid Sequence Editing
(3)

One point we need to highlight is that if ChatDrug returns an invalid sequence, we would just skip and do not consider it in
computing the hit ratio. That is why we use “Number of Valid Sequence Editing” as the denominator here.

In small molecule editing tasks, ChatDrug tends to return more than one sequence in the PDDS module. Thus, we add
a prompt “Give me five molecules in SMILES only and list them using bullet points.” to unify the numbers and format of
molecules returned by ChatDrug. In the experiments of the Conversation module, we always choose the first valid molecule as
the beginning of the conversation. We further carry out an ablation study to explore the effect of using more molecules in the
PDDS module.
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F.5 Randomness
The experiment results of the PDDS Module are entirely deterministic. Any randomness observed in ReDF Module and
Conversation Module is due to the utilization of different seeds during the sampling of retrieval database DB from ZINC for
molecule editing.

Specifically, for small molecule editing, we adopt seed 0,1,2,3,4 for main results in Tables 1 and 2, and seed 0 for the other
ablation studies.

F.6 Computational Resources
All of our experiments are conducted on a single NVIDIA RTX A6000 GPU. The GPU is only used for peptide and protein
evaluation. The primary cost incurred during our experiments comes from the usage of the OpenAI API for ChatGPT, which
amounted to less than $100 in total.
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G Qualitative Analysis
In the main body, we provide 10 case studies and 3 similarity distributions to illustrate the effectiveness of ChatDrug for small
molecule editing, peptide editing, and protein editing.

In this section, we provide additional case studies and similarity distributions as follows:
• We list 8 case studies on functional group change of small molecules in Appendix G.1.1.
• We list 14 similarity comparisons on small molecules in Appendix G.1.2.
• We list 9 motif updates for all 9 peptide editing tasks in Appendix G.2.
• We list 8 case studies on secondary structure change of proteins in Appendix G.3.
We want to specify that for all the qualitative analyses listed here, we are using C = 2 conversation rounds. Especially for

small molecules, we consider random seed with 0 and the loose threshold, i.e., ∆ = 0 for all tasks.

G.1 Small Molecules
G.1.1 Functional Group Change on Small Molecules
Table 17 visualizes examples of 8 molecule editing tasks where ChatDrug successfully generates output molecules xxxout with
desirable property change, while the output of the first conversation round xxx1 fail. In Table 17a and b, xxxout successfully adds the
desirable fragments to alter the drug likeness of xxxin, while xxx1 does so in the wrong direction. In Table 17c, xxx1 installs a chloride
but maintains the same number of hydrogen bond acceptors (HBAs). In contrast, ChatDrug adds a salicylamide moiety that
brings two more HBAs. Similarly, in Table 17d, the number of hydrogen bond donors (HBDs) remains in xxx1 but successfully
increases in xxxout via insertions of alcohols and amines.

In Table 17e and f, both cases of xxx1 are able to increase the number of HBAs as indicated in the prompt, but the water
solubilities shift oppositely. The output molecules successfully fix the trend. In particular, hydrophibicity is appropriately
employed in Table 17f to balance the additional polarity from HBAs, generating a less soluble molecule. In Table 17g and h,
both cases of xxx1 satisfy the solubility requirement but not through the change of HBDs. In xxxout, the problems are solved by
having extra HBDs with further enhanced solubility changes.

Table 17. Visualization of additional eight small molecule editing cases. The blue regions , red regions , and green regions correspond
to the edited substructures in the input molecule xxxin, intermediate molecule xxx1 in the 1st conversation round, and the output molecule xxxout,
respectively.

(a) Prompt for 103: more like a drug (b) Prompt for 104: less like a drug

Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout

QED: 0.648 QED: 0.550 QED: 0.815 QED: 0.631 QED: 0.637 QED: 0.397

(c) Prompt for 107: more hydrogen bond acceptors (d) Prompt for 108: more hydrogen bond donors

Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout

HBA: 2 HBA: 2 HBA: 4 HBD: 1 HBD: 1 HBD: 3

(e) Prompt for 201: more soluble in water and more hydrogen bond acceptors (f) Prompt for 202: less soluble in water and more hydrogen bond acceptors

Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout

LogP: 1.12, HBA: 4 LogP: 1.34, HBA: 5 LogP: -0.42, HBA: 6 LogP: 0.98, HBA: 3 LogP: 0.02, HBA: 4 LogP: 1.68, HBA: 5

(g) Prompt for 203: more soluble in water and more hydrogen bond donors (h) Prompt for 204: less soluble in water and more hydrogen bond donors

Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout Input Molecule xxxin Intermediate Molecule xxx1 Output Molecule xxxout

LogP: 1.29, HBD: 1 LogP: 0.52, HBD: 1 LogP: -0.77, HBD: 3 LogP: 2.14, HBD: 0 LogP: 2.75, HBD: 0 LogP: 3.62, HBD: 2
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G.1.2 Similarity Between Input, Intermediate, Retrieved, and Output Molecules
In Figure 4, we plot the distribution of similarities between input molecules xxxin and retrieval xxxR, intermediate xxx1, and output
molecules xxxout using ChatDrug. Here we provide more results. The distributions of 8 single-objective small molecule editing
tasks can be found in Figure 9, and 6 multi-objective small molecule editing tasks can be found in Figure 10.

As shown in Figures 9 and 10, the observation of similarity distribution satisfies for all 8 single-objective and 6 multi-
objective tasks.

(a) Task 101. (b) Task 102. (c) Task 103.

(d) Task 104. (e) Task 105. (f) Task 106.

(g) Task 107. (h) Task 108.

Figure 9. Similarity distribution between input molecules xxxin and retrieval xxxR, intermediate xxx1, and output molecules xxxout. Here we show
the distribution of 8 single-objective editing tasks.

(a) Task 201. (b) Task 202. (c) Task 203.

(d) Task 204. (e) Task 205. (f) Task 206.

Figure 10. Similarity distribution between input molecules xxxin and retrieval xxxR, intermediate xxx1, and output molecules xxxout. Here we show
the distribution of 6 multi-objective editing tasks.
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G.2 Peptide
In the main body, we have illustrated how the motif of peptides changes for two peptide editing tasks. Here we show all 6
single-objective editing tasks in Figures 11 to 16.

• For task 301 in Figure 11, ChatDrug can successfully upweight E (Glutamic acid) at position 2.
• For task 302 in Figure 12, ChatDrug can successfully upweight A (Alanine) at position 2, and L (Leucine) at position
9.
• For task 303 in Figure 13, ChatDrug can successfully upweight E (Glutamic acid) at position 2, and L (Leucine) at
position 9.
• For task 304 in Figure 14, ChatDrug can successfully upweight R (Arginine) and K (Lysine) at position 5, and L
(Leucine) at position 9.
• For task 305 in Figure 15, ChatDrug can successfully upweight R (Arginine) and K (Lysine) at position 5, and L
(Leucine) at position 9.
• For task 306 in Figure 16, ChatDrug can successfully upweight E (Glutamic acid) at position 2, and L (Leucine) at
position 9.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 11. Visualization for peptide editing for task 301, higher binding affinity to HLA-B*44:02.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 12. Visualization for peptide editing for task 302, higher binding affinity to HLA-C*03:03.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 13. Visualization for peptide editing for task 303, higher binding affinity to HLA-B*40:01.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 14. Visualization for peptide editing for task 304, higher binding affinity to HLA-B*08:01.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 15. Visualization for peptide editing for task 305, higher binding affinity to HLA-B*08:01.

(a) Motifs of input peptides. (b) Motifs of edited peptides. (c) Motifs of experimental peptides.

Figure 16. Visualization for peptide editing for task 306, higher binding affinity to HLA-B*40:02.
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Here we show all 3 multi-objective editing tasks in Figures 17 to 19. Notice that here there are two target allele types, and
we mark them as “target allele 1” and “target allele 2”.

• For task 401 in Figure 17, ChatDrug can successfully upweight R (Arginine) and K (Lysine) at position 5, and L
(Leucine) and F (Phenylalanine) at position 9 for target allele type 1. ChatDrug can also upweight L (Leucine) at position
7, and V (Valine) and L (Leucine) at position 9 for target allele type 2.
• For task 402 in Figure 18, ChatDrug can successfully upweight E (Glutamic acid) at position 2, and L (Leucine) at
position 9 for target allele type 1. ChatDrug can also upweight F (Phenylalanine) and L (Leucine) at position 9 for target
allele type 2.
• For task 403 in Figure 19, ChatDrug can successfully upweight R (Arginine) and K (Lysine) at position 5, and L
(Leucine) at position 9 for target allele type 1.

Potential issue on conflicts among target allele types. One potential challenge is that for multi-objective editing, the
target allele types could have conflicting motifs, like the two target alleles for task 403. We leave this for future exploration.

(a) Motifs of input peptides. (b) Motifs of edited peptides.

(c) Motifs of experimental peptides (target allele 1). (d) Motifs of experimental peptides (target allele 2).

Figure 17. Visualization for peptide editing for task 401, higher binding affinity to HLA-B*08:01 and HLA-C*15:02.

(a) Motifs of input peptides. (b) Motifs of edited peptides.

(c) Motifs of experimental peptides (target allele 1). (d) Motifs of experimental peptides (target allele 2).

Figure 18. Visualization for peptide editing for task 402, higher binding affinity to HLA-B*40:02 and HLA-C*14:02.

(a) Motifs of input peptides. (b) Motifs of edited peptides.

(c) Motifs of experimental peptides (target allele 1). (d) Motifs of experimental peptides (target allele 2).

Figure 19. Visualization for peptide editing for task 403, higher binding affinity to HLA-B*08:01 and HLA-A*11:01.
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G.3 Protein
Recall that we consider two types of secondary structures for protein editing tasks. Both the inputs and outputs are protein
sequences. Then we use ESMFold [28] for protein folding (protein sequence to protein structure prediction) and then plot the
protein structures using PyMOL [59]. For all the protein structure visualizations, we mark α-helix structures and β -strand
structures. The edited regions are highlighted in the blue circles.

Task 501: edit proteins with more helix structures.

(a) Protein editing with more α-helix structures for data 1. (b) Protein editing with more α-helix structures for data 2.

(c) Protein editing with more α-helix structures for data 3. (d) Protein editing with more α-helix structures for data 4.

Figure 20. Protein editing with more α-helix structures.

Task 502: edit proteins with more strand structures.

(a) Protein editing with more β -strand structures for data 1. (b) Protein editing with more β -strand structures for data 2.

(c) Protein editing with more β -strand structures for data 3. (d) Protein editing with more β -strand structures for data 4.

Figure 21. Protein editing with more β -strand structures.
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H Ablation Studies
H.1 Zero-shot and In-context Learning for protein and peptide
In Section 4.4, we conduct an ablation study on small molecules to show the comparison between the zero-shot, in-context
learning, and ChatDrug. Here we conduct the same ablation study on peptides and proteins as follows.

Table 18. Results on six single-objective and three multi-objective peptide editing tasks. Random Mutation-R for R mutated positions. The
evaluation is the hit ratio of the increased binding affinity score. The best results are marked in bold. Due to the space limitation, please
check Appendix E for the text prompt of each task.

single-objective editing multi-objective editing

301 302 303 304 305 306 401 402 403

Random Mutation-1 1.80 14.40 1.80 1.80 12.00 5.60 3.20 0.80 0.40
Random Mutation-2 1.80 13.40 2.80 3.00 8.40 4.40 2.20 0.60 1.20
Random Mutation-3 1.80 9.40 2.40 4.20 9.00 3.80 3.00 0.60 0.80
In-context Learning (few-shot) 24.05 38.40 27.40 32.00 45.50 32.80 29.20 17.47 14.40
ChatDrug (C = 0, zero-shot) 1.60 16.80 2.40 8.22 15.00 8.02 5.41 2.00 1.20
ChatDrug (C = 2) 58.60 69.34 58.52 55.11 64.40 62.73 53.71 41.45 54.71

Table 19. Results on two protein editing tasks. Random Mutation-R for R mutated positions. The evaluation is the hit ratio of increased
secondary structures accordingly. The best results are marked in bold.

501 more helix 502 more strand

Random Mutation-1 18.32 17.35
Random Mutation-2 24.95 19.69
Random Mutation-3 26.90 21.44
In-context Learning (few-shot) 36.64 44.47
ChatDrug (C = 0, zero-shot) 21.43 23.73
ChatDrug (C = 2) 34.79 51.38
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H.2 Ablation Study on the Thresholds in Feedback Condition Function
In the main body, we conduct an ablation study on the thresholds in the feedback condition function. Due to the space limitation,
we only list the mean in Table 7. Here we list both the mean and standard deviation as follows.

Table 20. Ablation studies on single-objective small molecule editing and feedback condition D with five seeds and two conversational
rounds. The evaluation metric E uses the strict threshold for each task.

101 102 103 104 105 106 107 108

loose threshold 80.73±1.32 41.00±0.91 11.23±2.70 16.94±1.24 33.16±2.22 53.59±1.59 14.96±1.96 21.93±1.82
strict threshold 88.67±0.95 70.08±3.44 19.37±5.54 30.99±2.66 43.08±2.95 66.69±2.74 72.60±2.51 76.43±3.32

Table 21. Ablation studies on multi-objective small molecule editing and feedback condition D with five seeds and two conversational
rounds. The evaluation metric E uses the strict threshold for each task.

201 202 203 204 205 206

loose threshold 20.14±0.86 7.96±2.05 17.93±0.79 5.79±1.38 3.66±0.24 41.04±1.66
strict threshold 49.64±2.66 24.92±4.85 53.64±5.81 24.19±2.19 10.44±5.75 52.9±2.23
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H.3 Ablation Study on the Number of Request Answers in Zero-shot ChatDrug
Notice that in Table 9, we list five molecules (a.k.a. five trials) for each answer. In this subsection, we would like to conduct an
ablation study to explore in the zero-shot setting of ChatDrug, i.e., with the conversation round C = 0, if we can obtain higher
performance using more trial numbers. This means that for each input small molecule, we have five edited small molecules; as
long as one of them is a hit, then we say this is a successful hit. The results for 14 tasks with the loose threshold are listed below.

Table 22. Ablation studies on different trial numbers on single-objective molecule editing, with C = 0 and seed is 0.

loose condition ∆ = 0 strict condition ∆ > 0

trial = 1 trial = 3 trial = 5 trial = 1 trial = 3 trial = 5

101 more soluble in water 78.26 88.77 93.05 68.48 80.21 85.03
102 less soluble in water 71.35 89.95 93.12 24.16 74.60 78.84
103 more like a drug 16.15 45.64 53.81 2.08 4.62 7.11
104 less like a drug 32.12 68.37 75.00 2.07 17.86 31.12
105 higher permeability 16.04 27.98 33.16 9.63 18.13 22.28
106 lower permeability 8.33 34.04 57.67 5.56 24.47 42.86
107 more hydrogen bond acceptors 59.41 76.57 83.15 1.76 18.29 33.71
108 more hydrogen bond donors 63.16 85.23 89.77 5.85 19.89 32.39

Table 23. Ablation studies on different trial numbers on multi-objective molecule editing, with C = 0 and seed is 0.

loose condition ∆ = 0 strict condition ∆ > 0

trial = 1 trial = 3 trial = 5 trial = 1 trial = 3 trial = 5

201 more soluble in water and
more hydrogen bond acceptors 43.09 69.89 75.40 6.08 22.04 34.22

202 less soluble in water and
more hydrogen bond acceptors 0.52 13.47 31.44 0.00 0.52 2.06

203 more soluble in water and
more hydrogen bond donors 54.49 79.67 81.97 6.18 18.13 35.52

204 less insoluble in water and
more hydrogen bond donors 0.53 5.21 13.54 0.00 0.00 1.04

205 more soluble in water and
higher permeability 2.11 4.15 5.18 1.05 1.04 1.04

206 more soluble in water and
lower permeability 22.22 59.07 69.43 16.40 48.70 55.44
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H.4 Ablation Study on Reasoning and Knowledge Extraction of ChatDrug
In Figure 5, we show the knowledge extraction ability of ChatDrug. As a control experiment, here we test the knowledge
extraction ability of ChatDrug without the examples illustrated in the conversation. As shown in Figure 22, the extracted
knowledge is more general and less informative when we remove the examples.

Certainly! Here are some general rules that can make molecules 
more soluble in water:

1. Polar molecules tend to be more soluble in water than nonpolar 
molecules. This is because water is a polar solvent and can 
interact with the polar molecules through hydrogen bonding.
2. Small molecules are often more soluble in water than larger 
molecules. This is because smaller molecules have a greater 
surface area to volume ratio, which makes it easier for them to 
interact with water molecules.
3. Salts and other ionic compounds are usually soluble in water 
because water can interact with the ions through electrostatic 
attractions.
4. Molecules with functional groups such as -OH (hydroxyl), -NH2 
(amino), and -COOH (carboxyl) are often more soluble in water 
because these functional groups can form hydrogen bonds with 
water molecules.
5. Increasing temperature can also increase solubility for many 
compounds. This is because higher temperatures increase the 
kinetic energy of molecules, which can overcome the intermolecu-
lar forces holding the compound together, allowing it to dissolve 
more easily.

It's important to note that these rules are not absolute and there 
are many exceptions. The specific properties of a molecule and its 
interactions with water can be complex and depend on a variety of 
factors.

Can you list the rules that can make molecules 
more soluble in water?

Figure 22. Knowledge extraction directly without any conversations.

Then as discussed previously, the extracted information in ChatDrug contains redundant information. For example, the one
listed in Figure 22 extracts three rules with overlap meanings. Then we conduct a further ablation study by forcing ChatDrug to
extract three rules from the five original rules in Figure 5. We observe that ChatDrug successfully merges rule 1 and rule 5, both
of which express the same concept that polar functional groups lead to good solubility. Interestingly, ChatDrug also merges rule
3 with rule 4. Though these 2 rules share the idea of ring structure, the essence of rule 3 is introducing polar substituents. Thus,
rule 3 should be more relevant to rules 1 and 5. Nevertheless, it is clear that ChatDrug understands the domain knowledge and
is capable of extracting and summarizing it. Overall, we would like to give positive feedback on ChatDrug.

Yes, I can help you make these rules more concise into three 
points:
1. Introduce polar functional groups (such as -OH, -NH2, or 
-COOH) and increase the number of polar functional groups in the 
molecule.
2. Replace nonpolar groups (such as alkyl chains or halogens) 
with polar functional groups.
3. Modify aromatic rings by introducing polar substituents (such 
as -OH or -NH2) or introducing cyclic structures that can enhance 
stability and solubility.

Now I have the following five rules to make molecules 
more soluble in water. But there are some redundancies, 
can you make them more concise into three points?
1. Introducing polar functional groups such as hydroxyl 
(-OH), amino (-NH2), or carboxyl (-COOH) groups.
2. Replacing nonpolar groups such as alkyl chains or 
halogens with polar functional groups.
3. Modifying aromatic rings by introducing polar 
substituents such as hydroxyl or amino groups.
4. Introducing cyclic structures that can enhance 
stability and solubility.
5. Increasing the number of polar functional groups in 
the molecule.

Figure 23. Further knowledge extraction.

To sum up, we observe that ChatDrug can understand and extract the knowledge to some extent, though not perfectly. We
believe this is a promising direction for future exploration.
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