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1 Motivation & Problem Definition

Ultimate goal:

•Molecular property prediction on target (downstream) tasks.

•MoleculeNet [1]: only 2D topology for molecular graph is available.


[1] Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning." Chemical science 9.2 (2018): 513-530.
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1 Motivation & Problem Definition

Indeed, molecules can also have 3D geometry.

• 3D geometry is more accurate for molecular property prediction.

• 3D geometry is more expensive to obtain (e.g. physical simulation).
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General: 
•Two augmentation views in SimCLR. 
•Local and global views in Deep InfoMax. 
•Masked and visual patches in BEiT. 
•…



2 Related Work

Widely discussed in [1, 2, 3, 4].


Contrastive SSL:

• Inter-data

• Examples: InfoNCE, Jense-Shannon Estimation


Generative SSL:

• Intra-data

• Examples: Masked Auto-Encoding, BYOL, SimSiam


[1] Liu, Xiao, et al. "Self-supervised learning: Generative or contrastive." IEEE Transactions on Knowledge and Data Engineering (2021).

[2] Liu, Yixin, et al. "Graph self-supervised learning: A survey." arXiv preprint arXiv:2103.00111 (2021).

[3] Wu, Lirong, et al. "Self-supervised on graphs: Contrastive, generative, or predictive." arXiv e-prints (2021): arXiv-2105.

[4] Xie, Yaochen, et al. "Self-supervised learning of graph neural networks: A unified review." arXiv preprint arXiv:2102.10757 (2021).
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3 Preliminaries

Notations:

• : atom (node) attributes.


• : bond (edge) attributes.


• : atom (node) positions.


Molecule as 2D topological graph:

•  for a 2D molecular graph.


•  for 2D representation, .


Molecule as 3D geometric graph:

•  for a 3D molecular graph.


•  for 3D representation, .


A
E
R

x
hx hx = 2D-GNN(A, E)

y
hy hy = 3D-GNN(A, R)

From [1] Axelrod, Simon, and Rafael Gomez-Bombarelli. "GEOM: Energy-annotated molecular conformations for property 
prediction and molecular generation." arXiv preprint arXiv:2006.05531 (2020).
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3 Preliminaries

Energy-Based Model (EBM): where  is the energy function, and  

  is normalization constant / partition function.


[1] Liu, Shengchao, et al. "Pre-training Molecular Graph Representation with 3D Geometry." arXiv preprint arXiv:2110.07728 (2021).

[2] Gutmann, Michael, and Aapo Hyvärinen. "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR 
Workshop and Conference Proceedings, 2010.

p(x) =
exp(−E(x))

A
, E(x)

A = ∫x
exp(−E(x))dx

15



3 Preliminaries

Energy-Based Model (EBM): where  is the energy function, and  

  is normalization constant / partition function.


• Bottleneck: intractable 
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3 Preliminaries

Energy-Based Model (EBM): where  is the energy function, and  

  is normalization constant / partition function.


• Bottleneck: intractable 

• Solutions:

• Noise-Contrastive Estimation (NCE) [1, 2]

• Contrastive Divergence

• Score Matching


[1] Liu, Shengchao, et al. "Pre-training Molecular Graph Representation with 3D Geometry." arXiv preprint arXiv:2110.07728 (2021).

[2] Gutmann, Michael, and Aapo Hyvärinen. "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR 
Workshop and Conference Proceedings, 2010.

p(x) =
exp(−E(x))

A
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exp(−E(x))dx

A
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4 Method: GraphMVP

4.1 MI and SSL 
4.2 Contrastive SSL 
4.3 Generative SSL 
4.4 Multi-task Objective
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4.1 MI and SSL

Mutual information (MI):

• measures the non-linear dependence between variables.

• the larger MI, the stronger dependence between variables.


4

H(X) H(Y )

H(X, Y )

H(X |Y ) H(Y |X )I(X; Y )
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4.1 MI and SSL

Mutual information (MI):

• measures the non-linear dependence between variables.

• the larger MI, the stronger dependence between variables.


Maximizing MI between 2D and 3D views:

• Expect: obtain a more expressive 2D representation by sharing more information 

with its 3D counterparts.

4

H(X) H(Y )

H(X, Y )

H(X |Y ) H(Y |X )I(X; Y )
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4.1 MI and SSL




How to maximize this?

I(X; Y) = 𝔼p(x,y)[log
p(x, y)

p(x)p(y) ]
≥ 𝔼p(x,y)[log

p(x, y)
p(x)p(y) ]

=
1
2

𝔼p(x,y)[log p(x |y)] +
1
2

𝔼p(x,y)[log p(y |x)] .
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4.1 MI and SSL




How to maximize this?

GraphMVP proposes 2 frameworks — 1 contrastive and 1 generative SSL.


I(X; Y) = 𝔼p(x,y)[log
p(x, y)

p(x)p(y) ]
≥ 𝔼p(x,y)[log

p(x, y)
p(x)p(y) ]

=
1
2

𝔼p(x,y)[log p(x |y)] +
1
2

𝔼p(x,y)[log p(y |x)] .
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4.2 Contrastive SSL

Lower bound on MI:


.
I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]
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4.2 Contrastive SSL

Lower bound on MI:


.


If we model the log likelihood term with energy-based model (EBM):


.

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

ℒEBM = −
1
2

𝔼p(x,y)[log
exp( fx(x, y))

Ax|y
+ log

exp( fy(y, x))
Ay|x

]
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E(y, x) = − fy(y, x) Energy Value ∈ ℝ
Energy turn into prob through Gibbs distribution: 

p(y |x) =
exp(−E(y |x))

∫ exp(−E(ỹ |x))dỹ
=

exp( fy(y, x))
Ay|x



4.2 Contrastive SSL

Lower bound on MI:


.
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.
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4.2 Contrastive SSL

Lower bound on MI:


.


If we model the log likelihood term with energy-based model (EBM):


.


Then with NCE, we have the final objective as EBM-NCE:





where  is the noise distribution,  .

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

ℒEBM = −
1
2

𝔼p(x,y)[log
exp( fx(x, y))

Ax|y
+ log

exp( fy(y, x))
Ay|x

]

ℒEBM-NCE = −
1
2

𝔼pdata(y)[𝔼pn(x|y)[log(1 − σ( fx(x, y)))] + 𝔼pdata(x|y)[log σ( fx(x, y))]]
−

1
2

𝔼pdata(x)[𝔼pn(y|x)[log(1 − σ( fy(y, x)))] + 𝔼pdata(y|x)[log σ( fy(y, x))]],

pn fx(x, y) = fy(y, x) = ⟨hx, hy⟩
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4.2 Contrastive SSL

EBM-NCE & Jensen-Shannon Estimation (JSE) 
The formulations are similar, while there are 3 main differences:

• Derivation and intuition:


• JSE: f-divergence, variational estimation, Fenchel duality.

• EBM-NCE: MI lower bound, EBM, NCE.


• Noise distribution:

• JSE: MINE [1], empirical distribution for noise distribution.

• EBM-NCE: recent work [2] extends it with adaptively learnable noise distribution.


• Flexibility:

• EBM: score matching, contrastive divergence, etc.


[1] Belghazi, Mohamed Ishmael, et al. "Mine: mutual information neural estimation." arXiv preprint arXiv:1801.04062 (2018).

[2] Arbel, Michael, Liang Zhou, and Arthur Gretton. "Generalized energy based models." arXiv preprint arXiv:2003.05033 (2020). 
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4.2 Contrastive SSL

EBM-NCE & InfoNCE 
Both EBM-NCE and InfoNCE are aligning the positive pairs and contrasting the 
negative pairs.

Take either one of them for contrastive SSL, i.e., 


  or  .
ℒC = ℒInfoNCE ℒC = ℒEBM-NCE

x 2D GNN 3D GNN y

Align 

Contrast

30



4.3 Generative SSL

Lower bound on MI:


.
I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]
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4.3 Generative SSL

Lower bound on MI:


.


Variational Molecule Reconstruction 
We introduce a variational distribution :


.


I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

zx ∼ 𝒩(zx; μx, Σx)
log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |zx)] − KL(q(zx |x) | |p(zx))
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4.3 Generative SSL

Lower bound on MI:


.


Variational Molecule Reconstruction 
We introduce a variational distribution :


.


Limitation:

• Decoder for structured data. If the target data space, like 3D and 2D molecule, is 

discrete/structured, then the modeling and evaluation on this data space is hard.

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

zx ∼ 𝒩(zx; μx, Σx)
log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |zx)] − KL(q(zx |x) | |p(zx))

Reconstruction
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4.3 Generative SSL

Lower bound on MI:


.


Variational Molecule Reconstruction 
We introduce a variational distribution :


.


Solution:

Variational Representation Reconstruction (VRR) 
Let’s transfer the reconstruction from data space to representation space.

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

zx ∼ 𝒩(zx; μx, Σx)
log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |zx)] − KL(q(zx |x) | |p(zx))

Reconstruction

34



4.3 Generative SSL

Variational Molecule Reconstruction 
.


Variational Representation Reconstruction 
Let’s transfer the reconstruction from data space to representation space.


log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |zx)] − KL(q(zx |x) | |p(zx))
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4.3 Generative SSL

Variational Molecule Reconstruction 
.


Variational Representation Reconstruction 
Let’s transfer the reconstruction from data space to representation space.


Recall: If is  is continuous, we can use Gaussian for the likelihood:  , 
where  is the decoder

log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |zx)] − KL(q(zx |x) | |p(zx))

y ∥y − gx(zx)∥2

gx(zx)
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4.3 Generative SSL

Variational Molecule Reconstruction 
.


Variational Representation Reconstruction 
Let’s transfer the reconstruction from data space to representation space.


1. If is  is discrete and structured, then we propose this surrogate loss: 
, where  is the encoder on 


log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |zx)] − KL(q(zx |x) | |p(zx))

y
∥hy(y) − hy(gx(zx))∥2 hy y
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4.3 Generative SSL

Variational Molecule Reconstruction 
.


Variational Representation Reconstruction 
Let’s transfer the reconstruction from data space to representation space.


1. If is  is discrete and structured, then we propose this surrogate loss: 
, where  is the encoder on 


2. By approximation: 

log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |zx)] − KL(q(zx |x) | |p(zx))

y
∥hy(y) − hy(gx(zx))∥2 hy y

∥hy(y) − qx(zx))∥2
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4.3 Generative SSL

Variational Molecule Reconstruction 
.


Variational Representation Reconstruction 
Let’s transfer the reconstruction from data space to representation space.


1. If is  is discrete and structured, then we propose this surrogate loss: 
, where  is the encoder on 


2. By approximation: 


3. Add stop-gradient:  

log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |zx)] − KL(q(zx |x) | |p(zx))

y
∥hy(y) − hy(gx(zx))∥2 hy y

∥hy(y) − qx(zx))∥2

∥SG(hy(y)) − qx(zx))∥2
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4.3 Generative SSL

Final solution (VRR):





Notice 1: this surrogate loss can be exact if /  is continuous invertible.

Notice 2: this is another form of non-contrastive SSL (BYOL/SimSiam).

ℒG = ℒVRR =
1
2 [𝔼q(zx|x)[∥qx(zx) − SG(hy)∥2] + 𝔼q(zy|y)[∥qy(zy) − SG(hx)∥2

2]]
+

β
2

⋅ [KL(q(zx |x) | |p(zx)) + KL(q(zy |y) | |p(zy))] .

hx hy
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4.4 Multi-task Objective

41

Variational Lower BoundEBM Modeling

MI: I(X; Y) ≥ −
1
2 [H(Y |X) + H(X |Y)]

Contrastive SSL: EBM-NCE Generative SSL: VRR



4.4 Multi-task Objective

The objective is weighted sum of the contrastive and generative SSL:

.
ℒGraphMVP = α1 ⋅ ℒC + α2 ⋅ ℒG
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4.4 Multi-task Objective

The objective is weighted sum of the contrastive and generative SSL:

.


Contrastive and generative SSL are complementary.

• From representation learning:


•Contrastive SSL is inter-data.

•Generative SSL is intra-data.


• From distribution learning:

•Contrastive SSL is learning distribution in a local way: by contrasting negative pairs.

•Generative SSL is learning distribution in a global way: learning the data density function directly.

ℒGraphMVP = α1 ⋅ ℒC + α2 ⋅ ℒG
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5 Experiments

Datasets:

• Pre-training

• GEOM [1], 50k molecules, each with 5 conformers.


• Downstream

• Molecular Property Prediction:

• Physiology: Tox21, ToxCast, ClinTox, BBBP, Sider.

• Physical chemistry: ESOL, Lipophilicity, CEP.

• Biophysics: MUV, BACE, Hiv, Malaria.


• Drug-Target Interaction:

• Davis, KIBA.


Backbone models:

• GIN [2] for 2D GNN.

• SchNet [3] for 3D GNN.


[1] Axelrod, Simon, and Rafael Gomez-Bombarelli. "GEOM: Energy-annotated molecular conformations for property prediction and molecular generation." arXiv preprint arXiv:2006.05531 (2020). 
[2] Xu, Keyulu, et al. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018). 
[3] Schütt, Kristof T., et al. "Schnet–a deep learning architecture for molecules and materials." The Journal of Chemical Physics 148.24 (2018): 241722.
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5 Experiments
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6 Future Directions: SSL on Structured Data
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Variational Lower BoundEBM Modeling

MI: I(X; Y) ≥ −
1
2 [H(Y |X) + H(X |Y)]

Contrastive SSL: EBM-NCE Generative SSL: VRR



6 Future Directions: SSL on Structured Data
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Variational Lower BoundEBM Modeling

MI: I(X; Y) ≥ −
1
2 [H(Y |X) + H(X |Y)]

Contrastive SSL: EBM-NCE Generative SSL: VRR

1. Complementary. Why?



6 Future Directions: SSL on Structured Data
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Variational Lower BoundEBM Modeling

MI: I(X; Y) ≥ −
1
2 [H(Y |X) + H(X |Y)]

Contrastive SSL: EBM-NCE Generative SSL: VRR

2. EBM and MI/SSL. (Yann LeCun’s talks & slides) 
EBM with CD, SM, etc.

https://www.youtube.com/watch?v=A7AnCvYDQrU
http://helper.ipam.ucla.edu/publications/mlpws4/mlpws4_15927.pdf


6 Future Directions: SSL on Structured Data
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Variational Lower BoundEBM Modeling

MI: I(X; Y) ≥ −
1
2 [H(Y |X) + H(X |Y)]

Contrastive SSL: EBM-NCE Generative SSL: VRR

3. Another way to understand non-contrastive SSL. 
• Q: If BYOL/SimSiam work, does this mean other generative SSL can also work well?


[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv preprint arXiv:2111.06377 (2021).



6 Future Directions: SSL on Structured Data
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Variational Lower BoundEBM Modeling

MI: I(X; Y) ≥ −
1
2 [H(Y |X) + H(X |Y)]

Contrastive SSL: EBM-NCE Generative SSL: VRR

3. Another way to understand non-contrastive SSL. 
• Q: If BYOL/SimSiam work, does this mean other generative SSL can also work well?

• A: Yes! [1] provides the empirical evidence.


[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv preprint arXiv:2111.06377 (2021).



Thank you! 
Q & A
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