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1 Motivation & Problem Definition

Ultimate goal:
 Molecular property prediction on target (downstream) tasks.
 MoleculeNet [1]: only 2D topology for molecular graph is available.

[1] Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning." Chemical science 9.2 (2018): 513-530.
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1 Motivation & Problem Definition

Indeed, molecules can also have 3D geometry.
e 3D geometry is more accurate for molecular property prediction.
e 3D geometry is more expensive to obtain (e.g. physical simulation).
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Community has put more efforts in gathering large-scale 3D geometry datasets.



1 Motivation & Problem Definition

Community has put more efforts in gathering large-scale 3D geometry datasets.
Q: Can we utilize this for our ultimate goal?



1 Motivation & Problem Definition

Community has put more efforts in gathering large-scale 3D geometry datasets.
Q: Can we utilize this for our ultimate goal?

A: Yes!
e Graph Multi-View Pre-training (GraphMVP) on 2D and 3D views.

* Pre-training: large-scale dataset with 2D and 3D graph.
* Fine-tuning: downstream tasks with 2D graph only.
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1 Motivation & Problem Definition

Community has put more efforts in gathering large-scale 3D geometry datasets.
Q: Can we utilize this for our ultimate goal?
A: Yes!

e Graph Multi-View Pre-training (GraphMVP) on 2D and 3D views.
* Pre-training: large-scale dataset with 2D and 3D graph.
* Fine-tuning: downstream tasks with 2D graph only.

~ >
\) o (@ General:
I | ﬁj  Two augmentation views in SimCLR.
- m ? D oo e Local and global views in Deep InfoMax.
e~/ x h - 2 4.0 y * Masked and visual patches in BEIT.
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2 Related Work

Widely discussed in [1, 2, 3, 4].

Contrastive SSL:
e Inter-data
e Examples: INfoNCE, Jense-Shannon Estimation

Generative SSL.:
e Intra-data
e Examples: Masked Auto-Encoding, BYOL, SimSiam

[1] Liu, Xiao, et al. "Self-supervised learning: Generative or contrastive." IEEE Transactions on Knowledge and Data Engineering (2021).
[2] Liu, Yixin, et al. "Graph self-supervised learning: A survey." arXiv preprint arXiv:2103.00111 (2021).

[3] Wu, Lirong, et al. "Self-supervised on graphs: Contrastive, generative, or predictive." arXiv e-prints (2021): arXiv-2105.

[4] Xie, Yaochen, et al. "Self-supervised learning of graph neural networks: A unified review." arXiv preprint arXiv:2102.10757 (2021).
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2 Related Work

Graph View SSL Category

SSL Pre-training
2D Topology 3D Geometry Generative Contrastive Predictive

v

v
v

EdgePred [1]
AttrMask [2]
GPT-GNN [3]
InfoGraph [4]
ContexPred [2]
GraphLoG [5]
GraphCL [6]
JOAO |7]
Grover (8]

GraphMVP (Ours) [9]
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[1] Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017.
[2] Hu, Weihua, et al. "Strategies for pre-training graph neural networks." arXiv preprint arXiv:1905.12265 (2019).

[3] Hu, Ziniu, et al. "Gpt-gnn: Generative pre-training of graph neural networks." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.

[4] Sun, Fan-Yun, et al. "Infograph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization." arXiv preprint arXiv:1908.07000 (2019).

[5] Xu, Minghao, et al. "Self-supervised Graph-level Representation Learning with Local and Global Structure." arXiv preprint arXiv:2106.04113 (2021).

[6] You, Yuning, et al. "Graph contrastive learning with augmentations." Advances in Neural Information Processing Systems 33 (2020): 5812-5823.

[7] You, Yuning, et al. "Graph Contrastive Learning Automated." arXiv preprint arXiv:2106.07594 (2021).

[8] Grover, Rong, Yu, et al. "Self-supervised graph transformer on large-scale molecular data." arXiv preprint arXiv:2007.02835 (2020).

[9] Liu, Shengchao, et al. "Pre-training Molecular Graph Representation with 3D Geometry." arXiv preprint arXiv:2110.07728 (2021).
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3 Preliminaries

Notations:
e A: atom (node) attributes.
o [': bond (edge) attributes.

e R: atom (node) positions.

Molecule as 2D topological graph:
e x for a 2D molecular graph.

o hfor 2D representation, 1, = 2D-GNN(A, E).

Molecule as 3D geometric graph:
e y for a 3D molecular graph.

» h, for 3D representation, /1, = 3D-GNN(A, R).

From [1] Axelrod, Simon, and Rafael Gomez-Bombarelli. "GEOM: Energy-annotated molecular conformations for property
prediction and molecular generation." arXiv preprint arXiv:2006.05537 (2020).

CC(C)OC(=0)CCC/C=C\C[C@H]1[C@ @H](0O)C[C@ @H](O)[C@ @H]1CC[C@ @H](O)CCclccecect

; .\\\ /7 Q.

l
g

“

5
>
X
-

7%

L
o)
\
‘.
QY

Figure 1. Molecular representations of the latanoprost molecule. fop SMILES string. left Stereochemical formula with edge
features, including wedges for in- and out-of-plane bonds, and a double line for cis isomerism. right Overlay of conformers.
Higher transparency corresponds to lower statistical weight.
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3 Preliminaries

_ exp(—£(x))
- A

A = [ exp(—E(x))dx is normalization constant / partition function.
X

Energy-Based Model (EBM): p(x) , where E(x) is the energy function, and

[1] Liu, Shengchao, et al. "Pre-training Molecular Graph Representation with 3D Geometry." arXiv preprint arXiv:2110.07728 (2021).

[2] Gutmann, Michael, and Aapo Hyvarinen. "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010.
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3 Preliminaries

exp(—E(x)) . .
Energy-Based Model (EBM): p(x) = , where E(x) is the energy function, and

A

A = [ exp(—E(x))dx is normalization constant / partition function.
X

e Bottleneck: intractable A

[1] Liu, Shengchao, et al. "Pre-training Molecular Graph Representation with 3D Geometry." arXiv preprint arXiv:2110.07728 (2021).

[2] Gutmann, Michael, and Aapo Hyvérinen. "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010.
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3 Preliminaries

exp(—E(x)) . .
Energy-Based Model (EBM): p(x) = , where E(x) is the energy function, and

A

A = | exp(—E(x))dx is normalization constant / partition function.

X
e Bottleneck: intractable A
e Solutions:
* Noise-Contrastive Estimation (NCE) [1, 2]
e Contrastive Divergence
e Score Matching

[1] Liu, Shengchao, et al. "Pre-training Molecular Graph Representation with 3D Geometry." arXiv preprint arXiv:2110.07728 (2021).

[2] Gutmann, Michael, and Aapo Hyvérinen. "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010.
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4 Method: GraphMVP

4.1 Ml and SSL

4.2 Contrastive SSL

4.3 Generative SSL

4.4 Multi-task Objective
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4.1 Ml and SSL

Mutual information (Ml):

e measures the non-linear dependence between variables.
e the larger MI, the stronger dependence between variables.

H(X,Y)

’

H(X) H(Y)
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4.1 Ml and SSL

Mutual information (Ml):

e measures the non-linear dependence between variables.
e the larger MI, the stronger dependence between variables.

H(X,Y)

’

H(X) H(Y)

Maximizing M| between 2D and 3D views:

e EXxpect: obtain a more expressive 2D representation by sharing more information
with its 3D counterparts.
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4.1 Ml and SSL
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4.1 Ml and SSL

px,y) ]
px)p(y)
pXx,y) ]

g
vV PX)p()

I(X;Y) =, llog

> Epey) ll"

1

1
— 5 —p(x,y) llng(X | y)] T 5 —p(x,y) llng(y ‘x)l -

How to maximize this?
GraphMVP proposes 2 frameworks — 1 contrastive and 1 generative SSL.
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4.2 Contrastive SSL

Lower bound on MI:

1
IX;Y) > —
(X ¥) 22

~p(x,y) [lOg p(x ‘ y) T

log p(y | x)|.
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4.2 Contrastive SSL

Lower bound on MI:

1
IX;Y) > —
(X ¥) 22

If we model the log likelihood term with energy-based model (EBM):

1 exp(f(x, y))
gEBM - = 5 ~p(x,y) lOg A | +
x|y

~p(x,y) [lOg p(x ‘ y) T

log p(y [ ).

log

exp(f,(y, 1))

A

y|x
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4.2 Contrastive SSL

Lower bound on MI:

1
I[(X;Y) > > = oiepllog p(x | y)|+ log p(y | X)]l.

If we model the log likelihood term with energy-based model (EBM):

1 exp(f.(x, y)) exp(f,(y, X))
A = ——[E lo + 1o .
EBM I p(x,y) g Ax|y & Ay|x

What does this mean?



4.2 Contrastive SSL

If we model the log likelihood term with energy-based model (EBM):

1 exp(/f(x, y)) N

Zegm = — 7L, >[10g
2 P,y Axly

log

exp(f,(, ) |
) |

y|x

What does this mean?

E(ya )C) — _fy(ya .X)

> [Energy Value € R

Energy turn into prob through Gibbs distribution:

exp(—E(y|x)) exp(f,(y, X))

(] %) = _
PO = CEG D Ay,
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4.2 Contrastive SSL

Lower bound on MI:

1
IX;Y) > —
(X ¥) 22

If we model the log likelihood term with energy-based model (EBM):
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4.2 Contrastive SSL

Lower bound on MI:

1
[(X;Y) 2 ~E,)llog p(x|y) +log p(y | X)].

2

If we model the log likelihood term with energy-based model (EBM):

1

exp(f(x,y)) N

gEBM — 7 7 Sy [lOg

2 A

X

|y

log

exp(f,(y, 1))

A

y|x

Then with NCE, we have the final objective as EBM-NCE:

1

ZEBM-NCE = ~5 b 51000

|

_pn(XIy)[10g<1 — o(f(x, Y)))] +

= gatain 108 0L V)] ]

1

9) ~Pdata® [

= oollog(1 = o(f 0 )1+ E, - opollog o(f,(y, )]

where p,, is the noise distribution, f.(x,y) = f,(y,x) = (h,, hy).
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4.2 Contrastive SSL

EBM-NCE & Jensen-Shannon Estimation (JSE)
The formulations are similar, while there are 3 main differences:
e Derivation and intuition:
e JSE: f-divergence, variational estimation, Fenchel duality.
e EBM-NCE: Ml lower bound, EBM, NCE.
 Noise distribution:
e JSE: MINE [1], empirical distribution for noise distribution.
e EBM-NCE: recent work [2] extends it with adaptively learnable noise distribution.
o Flexiblility:
* EBM: score matching, contrastive divergence, etc.

[1] Belghazi, Mohamed Ishmael, et al. "Mine: mutual information neural estimation." arXiv preprint arXiv:1801.04062 (2018).
[2] Arbel, Michael, Liang Zhou, and Arthur Gretton. "Generalized energy based models." arXiv preprint arXiv:2003.05033 (2020).
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4.2 Contrastive SSL

EBM-NCE & InfoNCE

Both EBM-NCE and InfoNCE are aligning the positive pairs and contrasting the
negative pairs.
Take either one of them for contrastive SSL, i.e.,

Z¢c = ZLInfoNCE ©f £ = ZEBM-NCE-
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4.3 Generative SSL

Lower bound on Ml:

1

I(X;Y) > > =10 p(x | y) + log p(y | x)].
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4.3 Generative SSL

Lower bound on Ml:

1

I(X;Y) 2 =k, ,llogp(x]y) + log p(y|x)].

2

Variational Molecule Reconstruction

We introduce a variational distribution z, ~ A/ (z,; i, 2.):

log p(y|x) = log

'p(zx)[p(y | X, 2] 2

= o [108 P [ 20)] — KL(q(z, | %) | | p(z,)).
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4.3 Generative SSL

Lower bound on Ml:

1

I[(X;Y) > > =10 p(x | y) + log p(y | x)].

Variational Molecule Reconstruction
We introduce a variational distribution z, ~ A/ (z,; i, 2.):

log p(y|x) = log E,. ,[p(y|x,2)] Z|E (. 1»|log p(y]2)|| — KL(q(z | %) | | p(z,)).
Reconstruction

Limitation:
 Decoder for structured data. If the target data space, like 3D and 2D molecule, is
discrete/structured, then the modeling and evaluation on this data space is hard.
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4.3 Generative SSL

Lower bound on Ml:

1

I[(X;Y) > > =10 p(x | y) + log p(y | x)].

Variational Molecule Reconstruction
We introduce a variational distribution z, ~ A/ (z,; i, 2.):

log p(y|x) = log E,. ,[p(y|x,2)] Z|E (. 1»|log p(y]2)|| — KL(q(z | %) | | p(z,)).
Reconstruction

Solution:
Variational Representation Reconstruction (VRR)
Let’s transfer the reconstruction from data space to representation space.
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4.3 Generative SSL

Variational Molecule Reconstruction

log p(y | x) = log E,. \[p(y|x,2)] Z|E, (. |»|log p(y12)|| — KL(q(z | %) | | p(z,).

Variational Representation Reconstruction
Let’s transfer the reconstruction from data space to representation space.
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4.3 Generative SSL

Variational Molecule Reconstruction

log p(y | x) = log E,. \[p(y|x,2)] Z|E, (. |»|log p(y12)|| — KL(q(z | %) | | p(z,).

Variational Representation Reconstruction
Let’s transfer the reconstruction from data space to representation space.

Recall: If is y is continuous, we can use Gaussian for the likelihood: ||y — gx(zx)Hz,
where g (z,) is the decoder
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4.3 Generative SSL

Variational Molecule Reconstruction

log p(y | x) = log E,. \[p(y|x,2)] Z|E, (. |»|log p(y12)|| — KL(q(z | %) | | p(z,).

Variational Representation Reconstruction
Let’s transfer the reconstruction from data space to representation space.

1. If is y Is discrete and structured, then we propose this surrogate loss:
17, (y) — hy(gx(zx))Hz, where A, is the encoder on y
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4.3 Generative SSL

Variational Molecule Reconstruction
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Variational Representation Reconstruction
Let’s transfer the reconstruction from data space to representation space.

1. If is y Is discrete and structured, then we propose this surrogate loss:
17, (y) — zx))Hz, where /. is the encoder on y

2. By approximation: th(y) —@Z,))Hz



4.3 Generative SSL

Variational Molecule Reconstruction

log p(y | x) = log E,. \[p(y|x,2)] Z|E, (. |»|log p(y12)|| — KL(q(z | %) | | p(z,).

Variational Representation Reconstruction
Let’s transfer the reconstruction from data space to representation space.

1. If is y Is discrete and structured, then we propose this surrogate loss:
17, (y) — hy(gx(zx))Hz, where A, is the encoder on y

2. By approximation: th(y) — q'x(zx))”2
3. Add stop-gradient: HSG(hy(y)) — q'x(Zx))H2
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4.3 Generative SSL

Final solution (VRR):

1
26 =<2VRR =7 l oo 1) = SGUIP| + By 1y [1l9y(2)) - SG(hx)H%”

p
o lKL(q(zx [0) |1 p(z) + KL(q(z, | y) | \p(zy))] -
Reparameterize B
r. R ' S35 ~
\H;;)"f“\/fﬂ &8 I \ui\g §°
] _lc‘/~~c\N\1_o_ R | } i - ,
H ) Represent % O

Notice 1: this surrogate loss can be exact if /1,/h, is continuous invertible.

Notice 2: this is another form of non-contrastive SSL (BYOL/SimSiam).
40



4.4 Multi-task Objective

MI: 1Y) > — -

HY|X)+ HX|Y)

o |

EBM Modeling

\ 4

Contrastive SSL: EBM-NCE

T

Variational Lower Bound

\ 4

Generative SSL: VRR
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4.4 Multi-task Objective

The objective is weighted sum of the contrastive and generative SSL.:
ZLGraphMvP = @) - Zc+ & - ZG.

42



4.4 Multi-task Objective

The objective is weighted sum of the contrastive and generative SSL.:
ZLGraphMvP = @) - Zc+ & - ZG.

Align Contrastive

m

Generative

Project Reparameterize

Contrastive and generative SSL are complementary.
* From representation learning:
e Contrastive SSL is inter-data.
* Generative SSL is intra-data.
* From distribution learning:
» Contrastive SSL is learning distribution in a local way: by contrasting negative pairs.
* Generative SSL is learning distribution in a global way: learning the data density function directly.

43



5 Experiments

Datasets: Table 8: Summary for the molecule chemical datasets.
* Pre-training
. Dataset  Task # Tasks  # Molecules  # Proteins  # Molecule-Protein
e GEOM [1], 50k molecules, each with 5 conformers. CEBP  Classification 1 2039
Tox21 Classification 12 7,831
* Downstream ToxCast ~ Classification 617 8,576
T . Sider Classification 27 1,427
* Molecular Property Prediction: ClinTox  Classification 2 1,478
: : . MUV Classificati 17 93,087
e Physiology: Tox21, ToxCast, ClinTox, BBBP, Sider. NIV Ol 1 1127
: . . TP Bac Classificati 1 1,513
 Physical chemistry: ESOL, Lipophilicity, CEP. ace anscation
_ . . . Delaney  Regression 1 1,128
e Biophysics: MUV, BACE, Hiv, Malaria. Lipo Regression 1 4,200
. Malaria  Regression 1 9,999
* Drug-Target Interaction: CEP Regression 1 29,978
. Davis Regression 1 638 379 30,056
* Davis, KIBA. KIBA  Regression 1 2,068 229 118,254

Backbone models:
e GIN [2] for 2D GNN.
e SchNet [3] for 3D GNN.

[1] Axelrod, Simon, and Rafael Gomez-Bombarelli. "GEOM: Energy-annotated molecular conformations for property prediction and molecular generation." arXiv preprint arXiv:2006.05531 (2020).
[2] Xu, Keyulu, et al. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018).
[3] Schutt, Kristof T., et al. "Schnet—a deep learning architecture for molecules and materials." The Journal of Chemical Physics 148.24 (2018): 241722.
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5 Experiments

Table 1: Results for molecular property prediction tasks. For each downstream task, we report the
mean (and standard deviation) ROC-AUC of 3 seeds with scaffold splitting. For GraphM VP, we set

M = 0.15 and C' = 5. The best and second best results are marked bold and bold, respectively.

Table 5: Results for four molecular property prediction tasks (regression) and two DTA tasks
(regression). We report the mean RMSE of 3 seeds with scaffold splitting for molecular property

downstream tasks, and mean MSE for 3 seeds with random splitting on DTA tasks. For GraphMVP,

Pre-training BBBP  Tox21 ToxCast Sider ClinTox MUV HIv Bace  Ave we set M = 0.15 and C' = 5. The best performance for each task is marked in bold. We omit the std
- 65.4(2.4) 74.9(0.8) 61.6(1.2) 58.0(2.4) 58.8(5.5) 71.0(2.5) 75.3(0.5) 72.6(4.9) 67.21 here since they are very small and indistinguishable. For complete results, please check Appendix G.4.
EdgePred 64.5(3.1) 74.5(0.4) 60.8(0.5) 56.7(0.1) 55.8(6.2) 73.3(1.6) 75.1(0.8) 64.6(4.7) 65.64 — .
AttMask 70.220.5; 74.2%0.8; 62.520.4% 60.420.6; 68.629.6; 73.921.3; 74.3§1.3; 77.2%1.4; 70.16 Molecular Property Prediction Drug-Target Affinity
GPT-GNN 64.5(1.1) 75.3(0.5) 62.2(0.1) 57.5(4.2) 57.8(3.1) 76.1(2.3) 75.1(0.2) 77.6(0.5) 68.27 Pre-training ESOL Lipo Malaria CEP Avg Davis KIBA Avg
InfoGraph  69.2(0.8) 73.0(0.7) 62.0(0.3) 59.2(0.2) 75.1(5.0) 74.0(1.5) 74.5(1.8) 73.9(2.5) 70.10

ContextPred  71.2(0.9) 73.3(0.5) 62.8(0.3) 59.3(1.4) 73.7(4.0) 72.5(2.2) 75.8(1.1) 78.6(1.4) 70.89 — 1.178 0744 1.127 1254 1.0756 0.286 0.206  0.2459
GraphLoG  67.8(1.7) 73.0(0.3) 62.2(0.4) 57.4(2.3) 62.0(1.8) 73.1(1.7) 73.4(0.6) 78.8(0.7) 68.47 AM 11120730 1119 1256 10542 0291 0203 02476
G-Contextual 70.3(1.6) 75.2(0.3) 62.6(0.3) 58.4(0.6) 59.9(8.2) 72.3(0.9) 75.9(0.9) 79.2(0.3) 69.21 los 1106 0702 1101 1943 10606 0279 0198 09382
G-Motif 66.4(3.4) 73.2(0.8) 62.6(0.5) 60.6(1.1) 77.8(2.0) 73.3(2.0) 73.8(1.4) 73.4(4.0) 70.14 : - : : : : : -
GraphCL  67.5(3.3) 75.0(0.3) 62.8(0.2) 60.1(1.3) 78.9(4.2) 77.1(1.0) 75.0(0.4) 68.7(7.8) 70.64 JOAO 1.120 0708  1.145 1293 1.0663 0.281 0.196 0.2387
JOAO 66.0(0.6) 74.4(0.7) 62.7(0.6) 60.7(1.0) 66.3(3.9) 77.0(2.2) 76.6(0.5) 72.9(2.0) 69.57 GraphMVP 1091 0718 1114 1236 10397 0280 0178 02286
GraphMVP  68.5(0.2) 74.5(0.4) 62.7(0.1) 62.3(1.6) 79.0(2.5) 75.0(1.4) 74.8(1.4) 76.8(1.1) 71.69 GraphMVP-G  1.064 0.691 1.106 1.228 1.0221 0.274 0.175 0.2248
GraphMVP-G 70.8(0.5) 75.9(0.5) 63.1(0.2) 60.2(1.1) 79.1(2.8) 77.7(0.6) 76.0(0.1) 79.3(1.5) 72.76 GraphMVP-C  1.029 0.681 1.097 1244 1.0128 0276 0.168 0.2223
GraphMVP-C 72.4(1.6) 74.4(0.2) 63.1(0.4) 63.9(1.2) 77.5(4.2) 75.0(1.0) 77.0(1.2) 81.2(0.9) 73.07
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6 Future Directions: SSL on Structured Data

MI: 1Y) > — -

HY|X)+ HX|Y)

o |

EBM Modeling

\ 4

Contrastive SSL: EBM-NCE

T

Variational Lower Bound

\ 4

Generative SSL: VRR
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6 Future Directions: SSL on Structured Data

1. Complementary. Why?




6 Future Directions: SSL on Structured Data

2. EBM and MI/SSL. (Yann LeCun’s talks & slides)
EBM with CD, SM, etc.

48


https://www.youtube.com/watch?v=A7AnCvYDQrU
http://helper.ipam.ucla.edu/publications/mlpws4/mlpws4_15927.pdf

6 Future Directions: SSL on Structured Data

—

3. Another way to understand non-contrastive SSL.
e Q: If BYOL/SimSiam work, does this mean other generative SSL can also work well?

[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv preprint arXiv:2111.06377 (2021).
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6 Future Directions: SSL on Structured Data

—

3. Another way to understand non-contrastive SSL.
e Q: If BYOL/SimSiam work, does this mean other generative SSL can also work well?
e A: Yes! [1] provides the empirical evidence.

[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv preprint arXiv:2111.06377 (2021).
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Thank you!
Q&A



