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ViT: An Image Is Worth 16x16 Words: Transformers
for Image Recognition at Scale, ICLR'21

Link

Scope of this paper:
* Previously:

e Attention is applied in conjunction with CNN.

e Attention is used to replace certain components of CNN.
 This work:

e Pure Transformer is possible.


https://arxiv.org/abs/2010.11929

ViT: An Image Is Worth 16x16 Words: Transformers
for Image Recognition at Scale, ICLR'21

Vision Transformer (ViT)

Three key steps:

1. Split an image into sequence of flattened patches

2. Add patch embeddings and position embeddings

3 Feed into Transformer S — st e
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
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ViT: An Image Is Worth 16x16 Words: Transformers
for Image Recognition at Scale, ICLR'21

Observations:
1. ViT is worse on mid-sized dataset (with CNN)
2. VIT can reach or beat SOTA on larger-sized dataset
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).



ViT: An Image Is Worth 16x16 Words: Transformers
for Image Recognition at Scale, ICLR'21

Observations:
1. ViT is worse on mid-sized dataset (with CNN)
2. VIT can reach or beat SOTA on larger-sized dataset

Conjectures: st e
1. CNN inherently possess inductive biases 5 [ @‘—
(locality and translation equivalence). | Q:ﬁ]
2. Transformer lacks these inductive biases, IV
thus generalizes poorly. | Li

| et |

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).



ViT: An Image Is Worth 16x16 Words: Transformers
for Image Recognition at Scale, ICLR'21

A more recent work on image representation ConvNeXt [1].

ImageNet-1K Acc.
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Figure 1. ImageNet-1K classification results for e ConvNets and
vision Transformers. Each bubble’s area is proportional to FLOPs
of a variant in a model family. ImageNet-1K/22K models here take
2242/384” images respectively. We demonstrate that a standard
ConvNet model can achieve the same level of scalability as hierar-
chical vision Transformers while being much simpler in design.

[1] Liu, Zhuang, et al. "A ConvNet for the 2020s." arXiv preprint arXiv:2201.03545 (2022).



ViT: An Image Is Worth 16x16 Words: Transformers
for Image Recognition at Scale, ICLR'21

SSL: Masked patch prediction

e |nputs: masked/corrupted patches
e Replace embeddings with [mask] embedding (80%)
e Replace with a random other patch embedding (10%)
e Keep them as is (10%)



ViT: An Image Is Worth 16x16 Words: Transformers
for Image Recognition at Scale, ICLR'21

SSL: Masked patch prediction
e |nputs: masked/corrupted patches
e Replace embeddings with [mask] embedding (80%)
e Replace with a random other patch embedding (10%)
e Keep them as is (10%)
e Qutputs, three options:
e Mean of the raw patches (only report this one)
e 4”4 downsized version of the 16*16 patches
e Regression on the full patch with L2
e slightly worse, which seems to conflict with MAE
e main difference: decoder

10



DINO: Emerging Properties in Self-Supervised
Vision Transformers, ICCV’21

Link

Scope of this paper:

 In NLP, the success of Transformers comes from SSL pre-training, like BERT or
GPT

e This work studies ViT in SSL pre-training

11


https://openaccess.thecvf.com/content/ICCV2021/papers/Caron_Emerging_Properties_in_Self-Supervised_Vision_Transformers_ICCV_2021_paper.pdf

DINO: Emerging Properties in Self-Supervised
Vision Transformers, ICCV’21

DINO: self-distillation with no labels
is essentially BYOL, wrapped in teacher-student framework

Local and global views use cropping for each image:

e Global view:
e |arge resolution covering a large area (>50%) of original image
 Jo teacher network

e | ocal view:
e Small resolution covering a small area (<50%) of original image
 Jo student network

12



DINO: Emerging Properties in Self-Supervised
Vision Transformers, ICCV’21
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Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (x1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the
teacher network is centered with a mean computed over the batch.
Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.




DINO: Emerging Properties in Self-Supervised
Vision Transformers, ICCV’21

Observations:

e SSL VIT features/embeddings explicitly contain the scene layout and object
boundaries.

Figure 1: Self-attention from a Vision Transformer with 8 X 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.

e SSL VIT features/embeddings perform particularly well with k-NN w/o fine-
tuning, linear classifier nor data augmentation, achieving 78.3% top-1 acc on
ImageNet.

14



MoCo-v3: An Empirical Study of Training Self-
Supervised Vision Transformers, ArXiv’21

Link

Scope of this paper:
e Not a novel method.
e A straightforward, incremental, yet must-known baseline: contrastive SSL for ViT

19


https://arxiv.org/abs/2104.02057

MoCo-v3: An Empirical Study of Training Self-
Supervised Vision Transformers, ArXiv’21

Contrastive SSL using ViIT:
1. Take two augmentations for each image as two views

2. VIT as encoder

3. Train with InfoNCE o= —log exp(q-k”/7) W
exp(q-kt/7) + Z exp(q-k— /1)

16



MoCo-v3: An Empirical Study of Training Self-
Supervised Vision Transformers, ArXiv’21

Contrastive SSL using ViIT:
1. Take two augmentations for each image as two views

2. VIT as encoder

3. Train with InfoNCE o= —log exp(q-k” /) W
exp(q-k+/T) + Z exp(q-k—/7)

: Momentum

 Use two encoders for two views: fqandj}{
o SGD to update f, | .
« EMAtoupdatef,;: f,=m-f, + (1 —m) -fq

17



BEIT: BERT Pre-Training of Image lransformers,
ICLR’22

Link

Scope of this paper:
A SSL method on ViT


https://arxiv.org/abs/2106.08254

BEIT: BERT Pre-Training of Image lransformers,
ICLR’22

Two views for each image:

* |mage patches

e visual tokens: tokenize the image into discrete visual tokens, by the latent of the
discrete VAE (given/well-trained)

Prediction task: (ho motivation/intuition)
e reconstruct the visual tokens, instead of raw pixels of masked patches

19



BEIT: BERT Pre-Training of Image Transformers,
ICLR’22
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Figure 1: Overview of BEIT pre-training. Before pre-training, we learn an “image tokenizer” via
autoencoding-style reconstruction, where an image is tokenized into discrete visual tokens according
to the learned vocabulary. During pre-training, each image has two views, 1.e., image patches, and
visual tokens. We randomly mask some proportion of image patches (gray patches in the figure) and
replace them with a special mask embedding [M]. Then the patches are fed to a backbone vision
Transformer. The pre-training task aims at predicting the visual tokens of the original image based
on the encoding vectors of the corrupted image.



Masked Autoencoders Are Scalable Vision

| earners, CVPR’22

Link

Scope of this paper:

1. Masked autoencoding

2. Insights of comparison between
Images and languages.

,/ﬁ
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Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) 1s masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens 1s processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder 1s discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

2


https://arxiv.org/abs/2111.06377

Masked Autoencoders Are Scalable Vision
| earners, CVPR’22

Question: what makes masked autoencoding different between vision and
language?

27



Masked Autoencoders Are Scalable Vision
| earners, CVPR’22

From following perspectives:

* Architectures are different.
e |n NLP Transformer has been the dominant model.
e |n vision, CNN were dominant over the last decade.
e —> this architecture gap has been addressed by ViT

23



Masked Autoencoders Are Scalable Vision
| earners, CVPR’22

From following perspectives:
 Architectures are different.
e |n NLP Transformer has been the dominant model.
e |n vision, CNN were dominant over the last decade.
e —> this architecture gap has been addressed by ViT.
 Information density is different between language and vision.
* |n NLP, languages are highly semantic and information-dense.
* Invision, images are natural signals with heavy spatial redundancy.
e —> high masking ratio: reduce redundancy and makes pre-text tasks more challenging.

4



Masked Autoencoders Are Scalable Vision
| earners, CVPR’22

From following perspectives:
 Architectures are different.
e |n NLP Transformer has been the dominant model.
e |n vision, CNN were dominant over the last decade.
e —> this architecture gap has been addressed by ViT.
 Information density is different between language and vision.
* In NLP, languages are highly semantic and information-dense.
* Invision, images are natural signals with heavy spatial redundancy.
e —> high masking ratio: reduce redundancy and makes pre-text tasks more challenging.
* The antoencoder’s decoder plays a different role between reconstructing text and images.
* Invision, the decoder reconstructs pixels — output is of a lower semantic level than common recognition tasks.
* In NLP, the decoder reconstructs missing words — contain rich semantic information.
e —>nvision, the decoder is more important; while in NLP, the decoder can be trivial (as MLP).
e MAE decoder has another series of Transformer blocks, and only used during SSL pre-training.

20



Masked Autoencoders Are Scalable Vision
| earners, CVPR’22

Results on ImageNet-1K.

method pre-train data ViT-B  VIT-L ViT-H ViT-Hy4g
DINO [5] IN1K 82.8 - - -
MoCo v3 [9] IN1K 83.2 84.1 - -
BEiT [2] IN1IK+DALLE 83.2 85.2 - -
MAE IN1K 83.6 85.9 86.9 87.8

Table 3. Comparisons with previous results on ImageNet-
1K. The pre-training data is the ImageNet-1K training set (ex-
cept the tokenizer in BE1T was pre-trained on 250M DALLE data
[50]). All self-supervised methods are evaluated by end-to-end
fine-tuning. The ViT models are B/16, L/16, H/14 [16]. The best
for each column 1s underlined. All results are on an 1mage size of
224, except for ViT-H with an extra result on 448. Here our MAE
reconstructs normalized pixels and 1s pre-trained for 1600 epochs.

20



ViT

(SSL part)

DINO

MoCo-v3

BEIT

MAE

View Construction

Masked patches
Mean of patches

Global: larger patch
Local: smaller patch

SSL Objective

Contrastive or Generative

Reconstruction to the mean of patches Generative

Teacher-student (BYOL)

Two random augmentations as two views InfoNCE

Masked patches
Visual Tokens: latent from discrete VAE

Masked patches
Raw patches

Reconstruction to visual tokens

Reconstruction to raw patches

(Generative

Contrastive

Generative

Generative

2/



Recent Progress on Transformer & SSL

1. Vision

2. Graphs & Molecules
1. Graphormer, NeurlPS’21
2. Keep it Simple, ArXiv’'21

3. ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular
Property Prediction, NeurlPS’20 ML4M Workshop

3. Tabular Data
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Graphormer: Do Transformers Really Perform
Bad for Graph Representation?, NeurlPS’21

Link

Scope of this paper:
A GNN algorithm.


https://arxiv.org/abs/2106.05234

Graphormer: Do Transformers Really Perform
Bad for Graph Representation?, NeurlPS’21

Three key components claimed in this paper:

1. Centrality Encoding
2. Spatial Encoding
3. Edge Encoding in the Attention

MatMul |
x i
SoftMax a
t v
¥
Scale
) t _
- MatMul \
Linear  [Lineaj  [Linear] "
Q K V
Edge Encoding
d Central ity Encoding

Figure 1: An illustration of our proposed centrality encoding, spatial encoding, and edge encoding in

Graphormer.
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Graphormer: Do Transformers Really Perform
Bad for Graph Representation?, NeurlPS’21

1. Centrality Encoding

* Node centrality measures how important a node is in the graph.
 Should be added into the model.

e Degree as node centrality, and should be added into the node feature. (But
most of the existing GNN models already done this?)

0 —
Py =i+ 2y (o) F 2ot (o) (5)

where 2, zt € R? are learnable embedding vectors specified by the indegree deg ™ (v;) and out-

degree deg™ (v;) respectively. For undirected graphs, deg™ (v;) and deg™ (v;) could be unified to
deg(v;). By using the centrality encoding in the input, the softmax attention can catch the node
importance signal in the queries and the keys. Therefore the model can capture both the semantic
correlation and the node importance 1n the attention mechanism.

3



Graphormer: Do Transformers Really Perform
Bad for Graph Representation?, NeurlPS’21

2. Spatial Encoding
e Embed node pairwise spatial information.
e Use 2D topology graph distance, I.e., shortest path distance.

 Assign each output a learnable scalar, which serves as a bias term in self-
attention module.

hiWgq)(h;Wk)" b
\/& + ¢ (vi,vj)o

where by, ».) is a learnable scalar indexed by ¢(v;, v;), and shared across all layers.

Aijz(

(6)

32



Graphormer: Do Transformers Really Perform
Bad for Graph Representation?, NeurlPS’21

3. Edge Encoding in the Attention
e For each node pair, find a shortest path.

e Path encoding: the average of the dot-products of the edge feature and a
learnable embedding along the path.

(hiWq)(hjWk)"

N
1
\/;1 + b¢(vi,vj) + Cij, where Cij = N Z Le,, (wE)T, (7)

n=1

Aij =

where z., 1s the feature of the n-th edge e,, in SP;;, wE € R?= is the n-th weight embedding, and
dg 1s the dimensionality of edge feature.

33



Graphormer: Do Transformers Really Perform
Bad for Graph Representation?, NeurlPS’21

Results need benchmarking.
(PCBA & HIV results are using pre-training.)

Table 2: Results on MolPCBA. Table 3: Results on MolHIV.
method #param. AP (%) method #param. AUC (%)
DeeperGCN-VN+FLAG [30] 5.6M 28.424-0.43 GCN-GraphNorm [5, 8] 526K | 78.83+1.00
DGN [2] 6.7M 28.85+0.30 PNA [10] 326K 79.054+1.32
GINE-VN [5] 6.1M 29.174+0.15 PHC-GNN [29] 111K 79.344+1.16
PHC-GNN [29] 1.7M 29.4740.26 DeeperGCN-FLAG [30] 532K 79.42+1.20
GINE-APPNP [5] 6.1M 29.79+0.30 DGN [2] 114K | 79.70+0.97
GIN-VN[54] (fine-tune) 3.4M 29.02+0.17 GIN-vN[54] (fine-tune) 3.3M 77.80+1.82
Graphormer-FLAG 119.5M | 31.39£0.32 Graphormer-FLAG 470M | 80.51£0.53 RF + Fingerprints: 80.60

Table 4: Results on ZINC.

method #param. test MAE
GIN [54] 509,549 | 0.526+0.051
GraphSage [18] 505,341 | 0.398+0.002
GAT [50] 531,345 | 0.384+0.007
GCN [26] 505,079 | 0.367+0.011

GatedGCN-PE [4] | 505,011 | 0.214+0.006
MPNN (sum) [15] | 480,805 | 0.145+0.007

PNA [10] 387,155 | 0.142+0.010
GT [13] 588,929 | 0.226+0.014
SAN [28] 508, 577 | 0.13940.006

Graphormersym 489,321 | 0.122+0.006




Graphormer in PCQM4M:
FIRST PLACE SOLUTION OF KDD CUP 2021 & OGB LARGE-
SCALE CHALLENGE GRAPH PREDICTION TRACK

Key differences:
1. An ensemble of Graphormer & ExpC

2. For featurization: use 3D euclidean distance instead 2D topology distance in
Graphormer.

Type Attribute type Description
Atomic number Number of protons
Degree With Hydrogens and without Hydrogens
Number of Hydrogens
Hybridization Sp, sp2 or sp3 etc.
Aromatic atom a part of an aromatic ring
Is in ring
Atom Valence Explicit valence, implicit valence, total valence

Radical electrons

Formal charge

Gasteiger charge

Periodic table features rvdw, default valence, outer electrons, rb0O and etc.

Chirality Is chiral center
Donor or accepter donate electron or accept electron
Bond type Single, double, triple, aromatic bond, etc.
Bond stereo Z., E, cis, trans double bond, etc.
Bond Bond direction Bond’s direction (for chirality)
Is conjugated
D ey T T .
. Euclidean distance Using MMEFF optimizer (RDKitZ) to obtain the coordinates of a molecule %
:' Atom Pair | Euclidean distance Using MMFF optimizer to obtain the coordinates of a molecule ':

CEEEEEREEEREEEE "Table 17 AOMmIC and bOAd attfibates USEd T3 CONStIUCt BHapH fputs. - - n oo mrm e e .



Graphormer: FIRST PLACE SOLUTION OF KDD CUP 2021 &
OGB LARGE-SCALE CHALLENGE GRAPH PREDICTION
TRACK

~ N

(hiWQ)(thK)T ! | 1 ENT

A = Hbp(v,,v,)| T [Cighy Where ci; = — E Te, (W, )",
\/Zi \ y U N n=1

1. For spatial encoding:
Use RBF on the Euclidean distance as ¢(v;, v;)

2. For path encoding:

Xbonddist = Xbonddist + Lapalce(u, b),

where 1 = 0.001994, b = 0.031939. We choose u and b by fitting the difference between the calculated results of
RDKit and DFT, on another dataset called QM9 [Ramakrishnan et al., 2014], which provides the DFT-calculated 3D
molecular structures.
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Keeping it Simple: Language Models can learn
Complex Molecular Distributions, ArXiv’'21

Link

Scope of this paper:
Re-exploration of RNN (2-layer LSTM) + string representation: SMILES & SELFIES

& 1) SM-RNN

/7w CONIEEEEE]
0 2) SF-RNN
CIOIC|=C |C|=C |C|=C | Ring] | Branchl 2
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https://arxiv.org/abs/2112.03041

Keeping it Simple: Language Models can learn
Complex Molecular Distributions, ArXiv’'21

Link

Scope of this paper:
Re-exploration of RNN (2-layer LSTM) + string representation: SMILES & SELFIES

& 1) SM-RNN

7 e OO
O 2) SF-RNN
CIOICI=CICI=CIC[=C [ Ringl [Branchi 2

Comparable with JTVAE & CGVAE.

33


https://arxiv.org/abs/2112.03041

ChemBERTa: Large-Scale Self-Supervised
Pretraining for Molecular Property Prediction

Link

Input: SMIELS or SELFIES (similar performance)
Backbone model: ChemBERTa, built on RoBERTa [1]
Pre-training task: masked language model (MLM)

BBBP ClinTox (CT_TOX) HIV Tox21 (SR-p53)
2.039 1.478 41,127 7.831

ROC PRC ROC PRC ROC PRC ROC PRC

W/ SSL  (ChemBERTa 10M 0643 0620 0733 0975 0622 0119 0.728 0207

0.681 0.692 0693 0.968 0.780 0383 0.724 0335
0702 0724 0.833 0986 0763 0364 0.708 0.345

w/0 SSL |5uu

Table 1: Comparison of ChemBERTa pretrained on 10M PubChem compounds and Chemprop
baselines on selected MoleculeNet tasks. We report both ROC-AUC and PRC-AUC to give a full
picture of performance on class-imbalanced tasks.

[1] Liu, Yinhan, et al. "Roberta: A robustly optimized bert pretraining approach." arXiv preprint arXiv:1907.11692 (2019).
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https://arxiv.org/abs/2010.09885

Recent Progress on Transformer & SSL

1. Vision
2. Graphs & Molecules
3. Tabular Data
1. TabNet, ArXiv’19 / AAAI’21
2. TabTransformer, ArXiv’20
3. VIME (Value Imputation and Mask Estimation), NeurlPS’20
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Tabular Data

Problem formulation:

Education

Occupation

Gender

Relationship

60 200000 Bachelors Exec-managerial M Husband
23 0 High-school Farming-fishing M Unmarried
45 5000 Doctorate Prof-specialty M Husband
23 0 High-school | Handlers-cleaners F Wife

56 300000 Bachelors Exec-managerial M Husband
38 10000 Bachelors Prof-specialty F Wife
23 0 High-school Armed-Forces M Husband

True

False

True

False

True

True

False

41



TabNet, AAAI'21

Link

Scope of this paper:

e High-level pipeline for supervised learning

e High-level pipeline for self-supervised learning
e Model architecture


https://arxiv.org/pdf/1908.07442.pdf

TabNet, AAAI'21

e Supervised learning: decision tree (DT)-like classification using DNN.

e Or, using DNN for the decision making in DT-like algorithm (instead of the entropy, etc.)
e End-to-end learning
e EXplicit representation
e | arger model capacity

* An example: 2 ;
x;<a X, > a
Xy >d d :x2>d
Cix, — Cia -1 --------—---------.:.____
—Cix1 + Ca -1 :
-1 Cyx, — Cyd E
—1 —Cyx, + Cod : .
I

[x1, X2 ]



TabNet, AAAI'21

e Self-supervised learning: masked auto-encoding.

Unsupervised pre-training

Age Cap.gain Education Occupation Gender Relationship
53 200000 ? Exec-managerial F Wife
19 0 ? Farming-fishing M ?

? 5000 Doctorate Prof-specialty M Husband
25 ? ? Handlers-cleaners F Wife
59 300000 Bachelors ? ? Husband
33 0 Bachelors ? F ?
? 0 High-school Armed-Forces ? Husband
~
\ TabNet encoder /
~~
/ TabNet decoder \

Age Cap.gain Education Occupation Gender Relationship
Masters
High-school Unmarried
43
0 High-school F
Exec-managerial M
Adm-clerical Wife
39 M

Supervised fine-tuning

Age Cap.gain Education Occupation Gender Relations
60 200000 Bachelors Exec-managerial M Husbanc
23 0 High-school Farming-fishing M Unmarrie
45 5000 Doctorate Prof-specialty M Husbanc
23 0 High-school | Handlers-cleaners F Wife
56 300000 Bachelors Exec-managerial M Husbanc
38 10000 Bachelors Prof-specialty F Wife
23 0 High-school Armed-Forces M Husbanc

N
\ TabNet encoder /

’ Decision making

Income > $50k

True

False

True

False

True

True

False




TabNet, AAAI'21

e Fig (b) is for SSL only.

e The transformer here is not the Transformer

o Feature transformer
e Attentive transformer (mask)
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Link

Scope of this paper:
e Model architecture
e Supervised learning
e Self-supervised learning


https://arxiv.org/pdf/2012.06678.pdf

e [wo key components:
e [ransformer
e Column embedding for categorical feature

for 1-th column, the j-th categorical value,

embedding is e¢i( J) = [c¢i, qul;,-]

TabTransformer, ArXiv’20
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Figure 1: The architecture of TabTransformer.
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e Supervised learning

e Self-supervised learning: explore 2 methods
1. Masked auto-encoding / Masked language modeling (MLM)

2. Replaced token detection (RTD)
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|
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C
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Figure 1: The architecture of TabTransformer.
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Link

Scope of this paper:
e Self-supervised learning
e Semi-supervised learning


https://vanderschaar-lab.com/papers/NeurIPS2020_VIME.pdf

VIME, NeurlPS’20

e Self-supervised learning
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e Semi-supervised learning X
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Conclusion

e [Jransformer has been advancing from NLP to many different fields: vision, graph
applications, tabular data, etc.

e Self-supervised learning, on the other hand, provides a powerful yet model-
agnhostic framework for unsupervised representation learning.
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