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e Comments

Most are about contrastive learning, yet some belong to more general self-supervised learning.
Put them here since they are closely connected.
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Backgrounds for Contrastive Learning

e How to better utilize the unlabeled data?

 One solution is by pertaining on the self-supervised tasks.

e Such self-supervised learning can be roughly categorized as 2 types

Generative / Predictive

Data
Zo

Data
I

Loss measured in the output space
Examples: Colorization, Auto-Encoders

Credit to Ankesh Anand’s blog.

Data zg

Data I

Contrastive

Classification
(similar or not)

Loss measured in the representation space
Examples: TCN, CPC, Deep-InfoMax


https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

Backgrounds for Contrastive Learning

e Intuitional Motivation: score(f(x), f(xzT)) >> score(f(x), f(x7))

* Anchor point

 Positive/negative sample

e Score on the representation

exp (f(z)" f (27T))

Ly = —Ex N—1
exp (f(x)" f (x%)) + 2= exp (f(x)" f(25))

log

* Objective (INfoNCE):

e Theoretical Motivation: I(X; y) >E

- p(yilz:)
z:; 23 1 P(Yilz;) |

Mutual Information (Ml) is bounded by the InfoNCE. There also exist other bounds on MI, check
On Variational Bounds of Mutual Information, ICML’19.



https://arxiv.org/pdf/1905.06922.pdf
https://arxiv.org/pdf/1905.06922.pdf

Backgrounds for Contrastive Learning

* The Most Common Objective for Contrastive Learning (InfoNCE):

exp (f(x )Tf( )
exp (f(fE)Tf(fE+))+Z exp (f(2)Tf (2))

»CN = —EX log

* Two Key Challenges:

1.How to choose/design good positive and negative pairs for different
applications?

2.Why does contrastive learning work? And how this can contribute to the
design of positive/negative pairs?
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Application: Contrastive Learning on Images

e |R, CVPR’18 % Supervised ~_..kSimCLR (4x)
° I_A |CCV,19 g 7S *SimCLR (2X)
- : %) | eCPCv2-L
* CPC, ArXivi18 S 7O *simcLr o gMoCo (4
e Deep InfoMax (DIM), ICLR'19 < o IRL-c2x AMDIM
- 65 R eMoCo (2x)
+ CMC, ArXiv'19 & | qcpove FiRL-ens.
S § v oBigBiGAN
* SIMCLR, ICML’20 2 6oF %
(@)
e SimCLRv2, ArXiv’20 §55 | oRotation
e|nstDisc

25 50 100 200 400 626
Number of Parameters (Millions)

More details can be found in group slack or https://chao1224.github.io/material/slides/202006.pdf



https://openaccess.thecvf.com/content_cvpr_2018/CameraReady/0801.pdf
https://arxiv.org/pdf/1903.12355.pdf
https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1808.06670.pdf
https://arxiv.org/pdf/1906.05849.pdf
https://arxiv.org/abs/2002.05709
https://arxiv.org/pdf/2006.10029.pdf
https://chao1224.github.io/material/slides/202006.pdf
https://openaccess.thecvf.com/content_cvpr_2018/CameraReady/0801.pdf
https://arxiv.org/pdf/1903.12355.pdf
https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1808.06670.pdf
https://arxiv.org/pdf/1906.05849.pdf
https://arxiv.org/abs/2002.05709
https://arxiv.org/pdf/2006.10029.pdf
https://chao1224.github.io/material/slides/202006.pdf

Application: Contrastive Learning on Images

* Positive/negative pairs are from two views of same/different images.

Ly =—-Ex |log CXp (f( )Tf( ))
exp (f@)7f (@) + S0 exp (/@) f (@)

e Potential views include:

1.
2.

Clustering view: Images belong to the same cluster are positive (LA)

Data augmentation view: Images (Augmented) from the same image are
positive (IR, CMC, SimCLR, SimCLRv2, etc.)

Local and global view: Local patch and global image representation
from the same image are positive (DIM)



Application: Contrastive Learning on Images

e Some useful tips:

e Memory Bank, MoCo O < mby + (1 —m)bg.
contrastive loss contrastive loss contrastive loss
q-k q-k q-k
q k q k q k
encoder q encoder k encoder sampling encoder momentum
encoder
memory
bank
x? " x? . x? z"
(a) end-to-end (b) memory bank (c) MoCo

* Projection Head (SImCLR, SimCLR-V2)

Maximize agreement

90| o)
h; +— Representation —> h;
fC) f0)
’ 1


https://arxiv.org/pdf/1911.05722.pdf
https://arxiv.org/pdf/1911.05722.pdf

Application: Contrastive Learning on Graphs

Method Local Embedding Global Embedding
EdgePred nearby and disparate nodes discrimination -

DGI (node-graph) discrimination

InfoGraph (node-graph) discrimination & supervised and unsupervised discrimination

Contrastive Multi-View Graph
Pre-Training

GCC

GROVER*

ASGN

(node-graph) discrimination

context prediction & attribute masking property prediction on large datasets’
substructure/neighborhood discrimination -
contextual prediction on nodes & edges motif prediction
node and distance prediction molecular graph clustering

For more details, please feel free to check our survey paper.



Application: Contrastive Learning on Graphs

 [1] Edge Prediction (GraphSAGE), NIPS’17:

* Nearby nodes are positive, otherwise negative.

JQ(Zu) — = lOg (O'(ZIZU)) — Q . ]Evnran(v) log (0(_Z1—ervn)) )

* [2] Deep Graph Infomax (DGI), ICLR’19 / InfoGraph,
NIPS’19

 (Contrast local (hode) and global (graph) representation.

 Local and global pairs from the same/different graphs are positives/
negatives.

I (hy(G); Hy(G)) =
Ep[—sp(—Tp 4 (hiy(2), Hy(2)))] — Ep, 5[sp(Ts.4 (R (z'), Hy(z)))]


https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://arxiv.org/abs/1809.10341
https://arxiv.org/abs/1908.01000
https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf
https://arxiv.org/abs/1809.10341
https://arxiv.org/abs/1908.01000

[3] Strategies for Pre-training Graph Neural Networks, ICLR’19

e 2 node-level pre-training methods:

Masking Node/Edge Attribute

Context Prediction
e Subgraph: K-hop neighborhood
e Context graph: a region between r{-hop and r,-hop

e Context anchor nodes: between r-hop and K-hop
e Use context anchor nodes to predict subgraph

e Subgraph-Context pairs with the same/different center nodes are positive/

negative
Input graph (a) Context Prediction (b) Attribute Masking
Iy~ T K-hop neighborhood GNN
0 | XUCN. 0,8, ..
/ o]
GNN
C HN \ X
Context graph /j'(:’\\]/,‘/ o ) R

Q Center node

= Context anchor nodes

{C,N, O, S, ...}

X = Masked node



https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1905.12265

[3] Strategies for Pre-training Graph Neural Networks, ICLR’19

e Graph-Level

 Supervised training on ChEMBL datasets
e 450k chemicals and 1.3k tasks

e EXperiments

e Transfer from more common scaffolds to less common ones.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Average
# Molecules 2039 7831 8575 1427 1478 93087 41127 1513 /
# Binary prediction tasks 1 12 617 27 2 17 1 1 /
Gra};;e_ig:;lmg lilt(r)zcilt:-glgvel Out-of-distribution prediction (scaffold split)
- - 65.8 4.5 74.0+0.8 634406 573+1.6 580444 71.8+25 753419 70.1454 67.0
- Infomax 68.8 +0.8 753405 62.7+04 584+0.8 69.9+30 753+25 76.0+0.7 759 +1.6 70.3
- EdgePred 673 £2.4 76.0+0.6 64.1 £0.6 60.4+0.7 64.1+3.7 74.1+2.1 763+1.0 79.9+09 70.3
| — | AttrMasking | 64.3 2.8 76.7+04 642+05 61.0+0.7 71.8+4.1 747 +£1.4 772+£1.1 793+16 | 711 |
- ContextPred | 68.0 2.0 75.7+0.7 639 +0.6 60.9+06 659438 758+1.7 773+1.0 79.6+1.2 70.9
Supervised - 68.3 £0.7 77.0+0.3 6444+04 62.1+05 572425 794+13 7T744+12 769+1.0 70.0
Supervised Infomax 68.0 +1.8 77.8+03 649 +0.7 609+06 71.2+28 81.3+14 77.8+09 80.1+09 72.8
Supervised EdgePred 66.6 £2.2 783 +03 665 +03 63.3+09 709+46 785+24 775408 79.1+£3.7 72.6
| Supervised | AttrMasking | 66.5 £2.5 77.94+04 65.1+03 63.9+09 73.7+28 81.2+19 77.1+12 803409 | 732 |
Supervised | ContextPred | 68.7 £1.3 78.1 £0.6 65.7 £0.6 62.7 +0.8 72.6 £1.5 81.3 +2.1 79.9 +0.7 84.5 +0.7 74.2



https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1905.12265

[4] GROVER: Self-supervised Message Passing Transformer on
Large-scale Molecule Data, NIPS’20 In Submission

* Node/edge level task: subgraph masking

* Graph-level motif prediction

Contextual property prediction (node/edge level task) Graph-level motif prediction

Semantic motifs from

N Contextual property extraction Subgraph masking Prediction Semantc moifs
------------------------------------ - omain knowledge
/O/\( i node-based k=1, Z'\,? ";"N - oj\c :----—--—-----g-------~|
' i ! i o 0 I
Eo/i\o Oj\oo/o\e i i i e 'L’ H i RO X i

Graph-level Prediction

Input molecule ' E - node/edge : R”OH R—CHs
1
STSISIIIISISIIIISISIIIISIIIISICIIIICICICT = representation i R—CH: o i —
I edge-based k=11 AT ] Sy !
: : L : _—
- eee ! - i _C. R—C=N !
A e Y[ o e

________________________________________ ! see -
Molecular graph - ' masked part :_____________________: representation

e QOther details:
* A novel base GNN model: dynamic GNN (dyMPN)

e GNN Transformer


https://arxiv.org/pdf/2007.02835.pdf
https://arxiv.org/pdf/2007.02835.pdf
https://arxiv.org/pdf/2007.02835.pdf
https://arxiv.org/pdf/2007.02835.pdf

[5] Contrastive Multi-View Representation Learning on Graphs,
ICML’20

Graph Diffusion as data/graph augmentation
 Transform the adjacency matrix to a diffusion matrix

 Take the two matrices as congruent views of the same graph.

91
max. é Y ﬁ > M (Be, A7) -+ (7755 |
g

3 N - N\ [ N
\ Z I \/ | g ©O O o000 299 B0
T — GNN | | MLP — @4 MLP Pool
l // I:“ > — —> — |
<\ a_ — //f:1> 90(-) | | ful) > >— // «> E<LJ fo () > N
W«' : @ @O coo0io000
a;:f ( v Sarr:lple Sha:u'ed Cont:rast Shared
Al . . . . .
T T~ s s ~ . s N ~
\ / I \/ o oo X o0 | (0000 crze [©00d)
— N : <\ 7 GNN| [MLP | —\ : MLP Pool
|\\// == I>\//:> ) =p l\\// —> Q& < < —
\\ (O -4 0000 (0000 @
<]7J o - J . / M . J . J
& L



https://arxiv.org/abs/2006.05582
https://arxiv.org/abs/2006.05582

[5] Contrastive Multi-View Representation Learning on Graphs,
ICML’20

e Other interesting observations/conclusions:
* Increasing the number of views doesn’t help (for graph).

A simple readout is better than complicated pooling functions like
DiffPool.

* Applying regularization or normalization has a negative effect. (?)


https://arxiv.org/abs/2006.05582
https://arxiv.org/abs/2006.05582
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[1] On Mutual Information Maximization For
Representation Learning

[2] Understanding Contrastive Representation Learning
through Alignment and Uniformity on the Hypersphere

[3] Bootstrap Your Own Latent A New Approach to Self-
Supervised Learning

[4] When Does Self-Supervision Help Graph Convolutional

Networks?



https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136
https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136

[1] On Mutual Information Maximization For Representation
Learning, ICLR’20

I(X;Y)
E unknown/ \known :
E Tractable PO ) : unknown :
Various bounds on mutual information  Uloa 821 ‘—?q(.ﬂ_\q onknown p) KOO
i Intractable Structured i known I
' G(xly) Bounds §2.5 : p(y)

InfONCE ' IInfoN(_:.E §2.3 Monte-Carlo
f (33 % ayz) i
(& :
I(X;Y)>E Z log 2 Lex(X;Y), 224 i
1 1 ef(xz,yy) i / \
. g Inws IMINE
Variational form of KL-D (NWJ) L I
~ ~ ~
1 f (:1: ) A Lower Bounds Unpiased Upper
I(X, Y) Z Ep(x,y) [f(x, y)] — € ]Ep(a:) [Ep(y)e Y ] = INWJ (X, Y) Estimates Bounds
8 0.90
Observation: 6
""" 0.89
4 K
52 © 0.88
0 éi) 0.87
2 — Inwy —  Inwy
-4 ];\’('E 0.86 ];\"(f'lz'
0 5 10 15 20 0 5 10 15 20
Training steps (in thousands) Training steps (in thousands)

(2) (b)


https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf

[1] On Mutual Information Maximization For Representation
Learning, ICLR’20

 (Connection to Deep Metric Learning

* InfoNCE

ef (zisy:)
Iyc: =E KZlog

K
1
_ . f(ziy)—f(ziy:)
Sy fm,] log K E[KZ k’g(”Z? ” )]
i=1 K =1 JF

 Multi-class K-pair loss (?)

LK -pair-mc ({(mz yz)}K 19 (]5 Zlog (1 — Ze¢(x ) ¢(y;)—d(zi ) P (yi ))

1=1 VEL

e« Maximizing InfoNCE by using a critic f(x,y) = ¢(x) p(y), thus is
equivalent to metric learning.


https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf

[2] Understanding Contrastive Representation Learning
through Alignment and Uniformity on the Hypersphere,
ICML’20
L

e Leonnasive = By [=F@ FOWT + By o, JOEXDU W F0/D) + 3 exp(F ) Fe/ )]

e Two key properties of contrastive loss, with metric to quantify each property

e« Alignment/closeness: Learned pos pairs should be similar, thus invariant to noise factors.

Lusinf) = = Eqeyyop ILF) = fO)I§]. > 0

e  Uniformity: features should be roughly uniformly distributed on the unit hypersphere.
Luniform — log [E(x,y)diam[eXp(_t”f(x) _f(y)”%)]at > 0

Positive Pair : ( . i , n—— ) ~ Dp
i - -
z y
Alignment: Similar samples have similar features. Uniformity: Preserve maximal information.

(Figure inspired by Tian et al. (2019).)



https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242

[2] Understanding Contrastive Representation Learning
through Alignment and Uniformity on the Hypersphere,

Counts

Counts

Counts

ICML’20

Alignment Uniformity
Positive Pair Feature Distances Feature Distribution Class 0 Class 3 Class 6 Class 9
E —== Mean 1.0 1.0 1.0 1.0 1.0 A
50004 !
! 0.5 0.5 0.5 0.5 1 0.5
1
40001 i 0.0 0.0 0.0 0.0 0.0
1
3000 1 i —-0.5 - -0.5 0.5 . +0.5 0.5
1 i 3 > -
2000 i -1.01 \—/ -1.0 1 \—/ +1.0 g A o 1.0 oo atiees 1.0 e o
i -1 0 1 -1 0 -1 0 1 1
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’ AN AN MDA |1°°1 /T |1°°1 f\
! =
L I S o ¢ ’ . 0 ; - : 0 4 . . .
ooo 0.25 0.50 075 1.00 125 1.50 1.75 2.00 -2 0 2 0 2 -2 0 2 2 2
!, Distances Angles Angles Angles Angles Angles
(a) Random Initialization. Linear classification validation accuracy: 12.71%.
Alignment Uniformity
Positive Pair Feature Distances Feature Distribution Class 0 Class 3 Class 6 Class 9
5000 - i ---- Mean 1.0 1 - 1.0 1.0 1.0 / 1.0
4000 4 i 0.5 0.5 0.5 0.5 0.5 -
i 0.0 0.0 0.0 0.0 0.0 !
3000 ! \
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' N
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(b) Supervised Predictive Learning. Linear classification validation accuracy: 57.19%.
Alignment Uniformity
Positive Pair Feature Distances Feature Distribution Class 0 Class 3 Class 6 Class 9
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1
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(c) Unsupervised Contrastive Learning. Linear classification validation accuracy: 28.60%.


https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242

[2] Understanding Contrastive Representation Learning
through Alignment and Uniformity on the Hypersphere,
ICML’20

* InfoMax principle: maximizing the mutual information
max I(f(X), f(y))a V(x, y) ~ ppos'

lim ‘Ccontrastive(.f; T, M) — log M =

M — o0

LB @)

T (x,Y)~Dpos

R [log - [ef(w‘)Tf(w)/TH_

prdata .’.C_ diata

* Theorem 1: Perfectly alignment and perfectly uniform are solutions to the first
and second term.

* This paper concludes: Instead of interpreted with InfoMAX, what contrastive
loss doing is to learn an aligned and information-preserving encodet.


https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242

[3] Bootstrap Your Own Latent A New Approach to Self-

Supervised Learning, In Submission NeurlPS’20

e (Comparison between BYOL and contrastive learning

e No negative sampling

e More robust to the choice of image augmentation

e |teratively refine its representation

e Two networks and two views.

1. Online network: v; — f, g8y = 74

2. Target network: v, = f., g: = 2,

3. Use online network (representation) to predict target network (representation)

qe(Z1 )T’ Z2

1Go(z) — 27 =2-2

lgo(z) 21|22l

e Above is v; on online network and v, on target network. A symmetric loss is also included.

projection

input
image

Note: This is Self-Training, No Contrasting
Note: SIimCLR suggests adding projection

t

t/

view

\ s
fo

representation

ge

Y

fe

Y

Hae

9ge

prediction
qe
—>| qo(2) | online
loss |
44>l sg(z) F target

Sg



https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/pdf/2006.07733.pdf

[3] Bootstrap Your Own Latent A New Approach to Self-

Supervised Learning, In Submission NeurlPS’20

Update target weights:

Goal: y as the final representation

An ablation study:

E—T1E+(1—1)0.

e Randomly initialized network is uniform, but not well aligned. (?)

e Applying BYOL with 7 = 1 does learn a useful representation.

Target Thase Top-1
Constant random network 1 18.8+0.7
Moving average of online  0.999 69.8
Moving average of online 0.99 72.5
Moving average of online 0.9 68.4
Stop gradient of online’ 0 0.3

e Explanation, follow the idea from [2]:

e BYOL is explicitly doing alignment, no uniformity.

e (Conjecture): Moving average is scattering features, implicitly doing uniformity.

view

N\ %
fo

representation

[

Y

p s
g6

projection

\@
|

fe
J .

-] [
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J/ |

prediction

qe
qe (Z) . online

\
loss |
1

Sg


https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/pdf/2006.07733.pdf

[4] When Does Self-Supervision Help Graph Convolutional
Networks?, ICML’20

e Motivation:

 (Consider transductive semi-supervised setting for GCN: which makes
predictions on unlabeled data (hodes/edges)

 Self-supervised learning is better at utilizing the unlabeled data

* Three schemes to combine self-supervision and our target task
* Pre-training & fine-tuning: sequentially transfer
e Self-training: incrementally transfer

 Multi-task learning: simultaneously transfer


https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136

[4] When Does Self-Supervision Help Graph Convolutional

Three pretext tasks:

Networks?, ICML’20

* Node clustering: nodes with similar features tend to be similar

e Graph partitioning: nodes with more connections tend to be similar
(similar to node clustering, while the objective is to minimize edgecut)

 Graph completion: masking and reconstruction

(Adversarial Defense)

L = L‘(“nmplclinn
[Regression Loss]

Self - Supervision
\ Module

(III). Graph Completion |

o <y o
o0 — ‘;;)
|\ o O I, 1‘\
5 o e
) O I/'Bs\
| O o\ !

- - -

U R G PR R g pa pp——

° Mask Off [ |—
OO @9 i.e/v
5 O 'Reconsfr'ucfi
N Ve '
¢ & OO O



https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136

[4] When Does Self-Supervision Help Graph Convolutional
Networks?, ICML’20

e Experiment 1

3 schemes: pre-training & fine-tuning (P&F), self-training (M3S), multi-task (MTL)

3 pretext tasks: Node Clustering, Graph Partitioning, Graph Completion

Conclusion:

e P&F does help, but not on larger datasets like Citeseer and PubMed.

e (Conjecture: though pre-training can learn graph structure, such info will be lost

during fine-tuning; GCN is too shallow

e MTL is more general

Cora Citeseer PubMed

81.00 £ 0.67 70.85 £ 0.70 79.10 + 0.21

GCN 81.5 70.3 79.0
P&F-Clu 81.83 £+ 0.53 71.06 + 0.59 79.20 + 0.22
P&F-Par 81.42 + 0.51 70.68 + 0.81 79.19 + 0.21
P&F-Comp 81.25 £ 0.65 71.06 £ 0.55 79.19 + 0.39
M3S 81.60 + 0.51 71.94 + 0.83 79.28 + 0.30
MTL-Clu 81.57 £ 0.59 70.73 £+ 0.84 78.79 + 0.36
MTL-Par 81.83 £ 0.65 71.34 + 0.69 80.00 = 0.74
MTL-Comp 81.03 £+ 0.68 71.66 £ 0.48 79.14 + 0.28



https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136
https://arxiv.org/abs/2006.09136

[4] When Does Self-Supervision Help Graph Convolutional
Networks?, ICML’20

e Experiment 2: MTL on SOTA
e Par is generally beneficial to all SOTAs

1. Clu is not working because feature dim is low while dataset is large

2. Topology-based Par has a general assumption

3. The potential benefits of Comp can benefit other tasks

(adversarial robustness)

Datasets Cora Citeseer PubMed

GCN 81.00 & 0.67 70.85 £ 0.70 | 79.10 4+ 0.21

~ GCN+Clu | 81.57+0.59 | 70.73 £0.84 | 78.79 £ 0.36
GCN+Par 81.83 & 0.65 71.34 4+ 0.69 80.00 4 0.74
GCN+Comp 81.03 &+ 0.68 71.66 + 0.48 79.14 £+ 0.28
GAT 77.66 £+ 1.08 68.90 + 1.07 78.05 £ 0.46

~ GAT+Clu | 79.40+0.73 | 69.88 +1.13 | 77.80 £ 0.28
GAT+Par 80.11 £+ 0.84 69.76 4+ 0.81 80.11 £+ 0.34
GAT+Comp 80.47 +1.22 70.62 + 1.26 | 77.10 £+ 0.67
GIN 77.27 £+ 0.52 68.83 =040 | 77.38 4+ 0.59

" GIN+Clu | 7843 +0.80 | 68.86 +0.91 | 76.71 £0.36
GIN+Par 81.83 £+ 0.58 71.50 & 0.44 80.28 + 1.34
GIN+Comp 76.62 + 1.17 68.71 4+ 1.01 78.70 £ 0.69
GMNN 83.28 4+ 0.81 72.83 £+ 0.72 81.34 4+ 0.59

" GMNN+Clu | 83.49+0.65 | 73.13+0.72 | 79.45+0.76
GMNN-+Par 83.51 & 0.50 73.62 + 0.65 80.92 + 0.77
GMNN+Comp 83.31 £+ 0.81 7293 £+ 0.79 81.33 4+ 0.59
GraphMix 83.91 + 0.63 74.33 + 0.65 80.68 + 0.57

~  GraphMix+Clu | 83.87 £0.56 | 75.16 £0.52 | 79.99 +0.82
GraphMix+Par 84.04 £+ 0.57 7493 4+ 0.43 81.36 4 0.33
GraphMix+Comp | 83.76 +£0.64 | 7443 +0.72 | 80.82 £+ 0.54
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Backgrounds for Contrastive Learning

Applications for Contrastive Learning on Images and
Graphs

Some Deeper Insights

Comments



Conclusions and some thoughts:

 Understanding the role of contrastive learning is important, yet still an open
question.

* More domain knowledge on molecular graph. (scaffold in GROVER)

e QOther details:
* Pre-training & multi-task learning.
 Negative sampling. (MoCo, BYOL)

* The connection between base model (GNN model) and contrastive
methods, and how they are combined to affect the performance.

More details can be found in group slack or https://chao1224.qgithub.io/material/slides/202006.pdf
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