Contrastive Learning on Graphs and Some Interpretations

Shengchao Liu MILA & UdeM

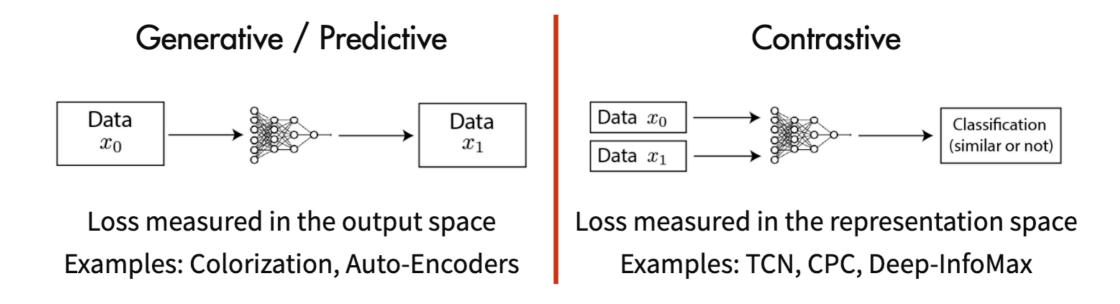
- Backgrounds for Contrastive Learning
- Applications for Contrastive Learning on Images and Graphs
- Some Deeper Insights
- Comments

Most are about contrastive learning, yet some belong to more general self-supervised learning. Put them here since they are closely connected.

- Backgrounds for Contrastive Learning
- Applications for Contrastive Learning on Images and Graphs
- Some Deeper Insights
- Comments

Backgrounds for Contrastive Learning

- How to better utilize the unlabeled data?
 - One solution is by pertaining on the self-supervised tasks.
 - Such self-supervised learning can be roughly categorized as 2 types



Credit to Ankesh Anand's blog.

Backgrounds for Contrastive Learning

Intuitional Motivation:

 $\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$

- Anchor point
- Positive/negative sample
- Score on the representation

• Objective (InfoNCE):
$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{\overline{\exp\left(f(x)^{T} f\left(x^{+}\right)\right)}}{\exp\left(f(x)^{T} f\left(x^{+}\right)\right) + \sum_{j=1}^{N-1} \exp\left(f(x)^{T} f\left(x_{j}\right)\right)} \right]$$

• Theoretical Motivation:
$$I(X;Y) \geq \mathbb{E} \left[\frac{1}{K} \sum_{i=1}^{K} \log \frac{p(y_{i}|x_{i})}{\frac{1}{K} \sum_{j=1}^{K} p(y_{i}|x_{j})} \right],$$

Mutual Information (MI) is bounded by the InfoNCE. There also exist other bounds on MI, check <u>On Variational Bounds of Mutual Information</u>, ICML'19.

Backgrounds for Contrastive Learning

• The Most Common Objective for Contrastive Learning (InfoNCE):

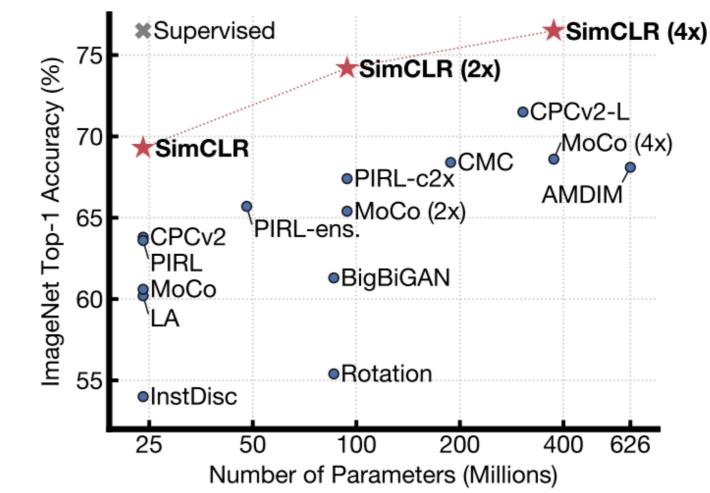
$$\mathcal{L}_N = -\mathbb{E}_X \left[\log \frac{\exp\left(f(x)^T f\left(x^+\right)\right)}{\exp\left(f(x)^T f\left(x^+\right)\right) + \sum_{j=1}^{N-1} \exp\left(f(x)^T f\left(x_j\right)\right)} \right]$$

- Two Key Challenges:
 - 1.How to choose/design good positive and negative pairs for different applications?
 - 2.Why does contrastive learning work? And how this can contribute to the design of positive/negative pairs?

- Backgrounds for Contrastive Learning
- Applications for Contrastive Learning on Images and Graphs
- Some Deeper Insights
- Comments

Application: Contrastive Learning on Images

- <u>IR</u>, CVPR'18
- <u>LA</u>, ICCV'19
- <u>CPC</u>, ArXiv'18
- Deep InfoMax (DIM), ICLR'19
- <u>CMC</u>, ArXiv'19
- <u>SimCLR</u>, ICML'20
- <u>SimCLRv2</u>, ArXiv'20



More details can be found in group slack or https://chao1224.github.io/material/slides/202006.pdf

Application: Contrastive Learning on Images

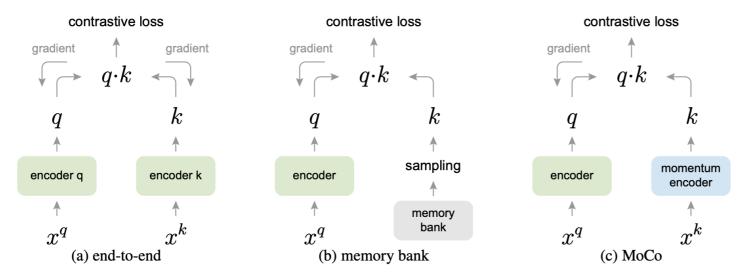
• Positive/negative pairs are from two views of same/different images.

$$\mathcal{L}_N = -\mathbb{E}_X \left[\log \frac{\exp\left(f(x)^T f\left(x^+\right)\right)}{\exp\left(f(x)^T f\left(x^+\right)\right) + \sum_{j=1}^{N-1} \exp\left(f(x)^T f\left(x_j\right)\right)} \right]$$

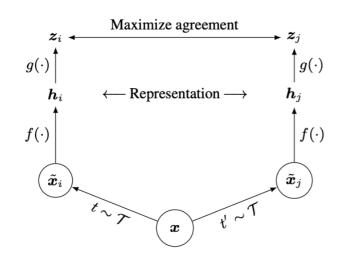
- Potential views include:
 - 1. Clustering view: Images belong to the same cluster are positive (LA)
 - 2. Data augmentation view: Images (Augmented) from the same image are positive (IR, CMC, SimCLR, SimCLRv2, etc.)
 - 3. Local and global view: Local patch and global image representation from the same image are positive (DIM)

Application: Contrastive Learning on Images

- Some useful tips:
 - Memory Bank, <u>MoCo</u> $\theta_k \leftarrow m\theta_k + (1-m)\theta_q$.



• Projection Head (SimCLR, SimCLR-V2)



Application: Contrastive Learning on Graphs

Method	Local Embedding	Global Embedding		
EdgePred	nearby and disparate nodes discrimination	_		
DGI	(node-graph) discrimination			
InfoGraph	(node-graph) discrimination & supervised and unsupervised discrimination			
Contrastive Multi-View Graph	(node-graph) discrimination			
Pre-Training	context prediction & attribute masking	property prediction on large datasets ¹		
GCC	substructure/neighborhood discrimination			
GROVER*	contextual prediction on nodes & edges	motif prediction		
ASGN	node and distance prediction	molecular graph clustering		

For more details, please feel free to check our survey paper.

Application: Contrastive Learning on Graphs

• [1] Edge Prediction (GraphSAGE), NIPS'17:

• Nearby nodes are positive, otherwise negative.

$$J_{\mathcal{G}}(\mathbf{z}_{u}) = -\log\left(\sigma(\mathbf{z}_{u}^{\top}\mathbf{z}_{v})\right) - Q \cdot \mathbb{E}_{v_{n} \sim P_{n}(v)}\log\left(\sigma(-\mathbf{z}_{u}^{\top}\mathbf{z}_{v_{n}})\right),$$

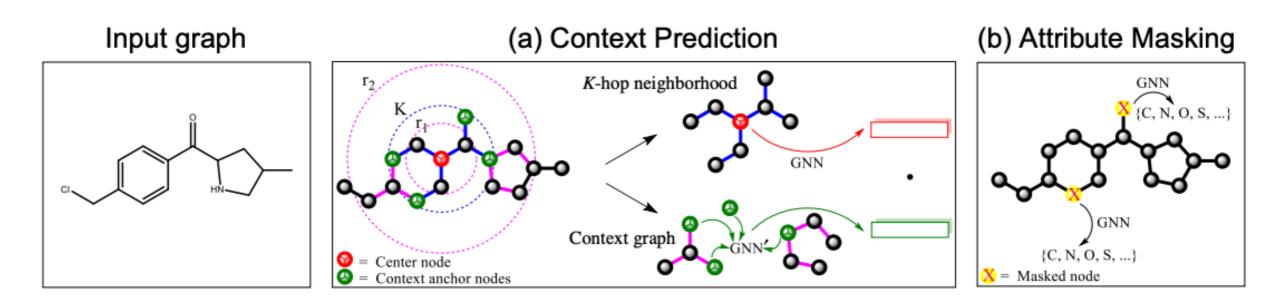
[2] <u>Deep Graph Infomax (DGI)</u>, ICLR'19 / <u>InfoGraph</u>, NIPS'19

- Contrast local (node) and global (graph) representation.
- Local and global pairs from the same/different graphs are positives/ negatives.

$$\begin{split} I_{\phi,\psi}(h^i_{\phi}(G); H_{\phi}(G)) &:= \\ \mathbb{E}_{\mathbb{P}}[-\mathrm{sp}(-T_{\phi,\psi}(\vec{h}^i_{\phi}(x), H_{\phi}(x)))] - \mathbb{E}_{\mathbb{P}\times\tilde{\mathbb{P}}}[\mathrm{sp}(T_{\phi,\psi}(\vec{h}^i_{\phi}(x'), H_{\phi}(x)))] \end{split}$$

[3] <u>Strategies for Pre-training Graph Neural Networks</u>, ICLR'19

- 2 node-level pre-training methods:
 - Masking Node/Edge Attribute
 - Context Prediction
 - **Subgraph**: *K*-hop neighborhood
 - Context graph: a region between r_1 -hop and r_2 -hop
 - **Context anchor nodes**: between *r*₁-hop and *K*-hop
 - Use context anchor nodes to predict subgraph
 - Subgraph-Context pairs with the same/different center nodes are positive/ negative



[3] <u>Strategies for Pre-training Graph Neural Networks</u>, ICLR'19

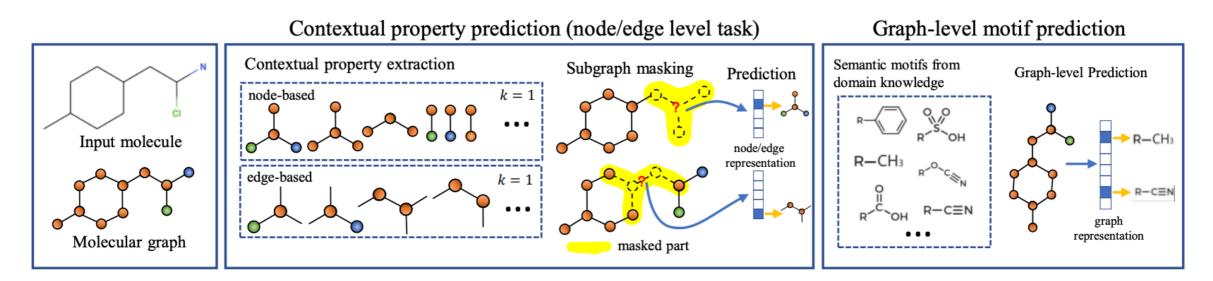
• Graph-Level

- Supervised training on ChEMBL datasets
- 450k chemicals and 1.3k tasks
- Experiments
 - Transfer from more common scaffolds to less common ones.

Dat	taset	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	Average
# Mo	lecules	2039	7831	8575	1427	1478	93087	41127	1513	/
# Binary pre	diction tasks	1	12	617	27	2	17	1	1	/
Pre-trainin	ng strategy	Out of distribution prediction (scoffeld split)								
Graph-level	Node-level	Out-of-distribution prediction (scaffold split)								
_	—	65.8 ±4.5	74.0 ± 0.8	63.4 ± 0.6	57.3 ±1.6	58.0 ± 4.4	71.8 ± 2.5	75.3 ±1.9	70.1 ± 5.4	67.0
_	Infomax	68.8 ±0.8	75.3 ± 0.5	62.7 ± 0.4	58.4 ± 0.8	69.9 ± 3.0	75.3 ± 2.5	76.0 ± 0.7	75.9 ± 1.6	70.3
-	EdgePred	67.3 ±2.4	76.0 ± 0.6	64.1 ± 0.6	60.4 ± 0.7	64.1 ± 3.7	74.1 ± 2.1	76.3 ± 1.0	79.9 ± 0.9	70.3
	AttrMasking	$\bar{64.3} \pm \bar{2.8}$	76.7 ± 0.4	$\bar{64.2} \pm \bar{0.5}$	$\bar{61.0\pm0.7}$	$7\overline{1}.\overline{8}\pm\overline{4}.\overline{1}$	74.7±1.4	$77.\bar{2}\pm1.1$	79.3±1.6	$[\bar{7}\bar{1}.\bar{1}\bar{1}]$
-	ContextPred	68.0 ± 2.0	75.7 ± 0.7	63.9 ± 0.6	60.9 ± 0.6	65.9 ± 3.8	75.8 ± 1.7	77.3 ± 1.0	79.6 ± 1.2	70.9
Supervised	_	68.3 ±0.7	77.0 ± 0.3	64.4 ± 0.4	62.1 ± 0.5	57.2 ± 2.5	79.4 ±1.3	74.4 ± 1.2	76.9 ±1.0	70.0
Supervised	Infomax	68.0 ± 1.8	77.8 ± 0.3	64.9 ± 0.7	60.9 ± 0.6	71.2 ±2.8	81.3 ±1.4	77.8 ± 0.9	80.1 ± 0.9	72.8
Supervised	EdgePred	66.6 ± 2.2	$\textbf{78.3} \pm \textbf{0.3}$	$\textbf{66.5} \pm \textbf{0.3}$	$\textbf{63.3} \pm \textbf{0.9}$	$70.9 \pm \! 4.6$	78.5 ± 2.4	77.5 ± 0.8	79.1 ± 3.7	72.6
Supervised	AttrMasking	$\bar{66.5} \pm \bar{2.5}$	77.9 ± 0.4	$\overline{65.1} \pm \overline{0.3}$	<u>63.9</u> ±0.9	$7\overline{3}.\overline{7} \pm \overline{2}.\overline{8}$	81.2±1.9	77.1 ± 1.2	$\bar{80.3}\pm \bar{0.9}$	$[\bar{73.2}]$
Supervised	ContextPred	68.7 ±1.3	$\textbf{78.1} \pm \textbf{0.6}$	65.7 ± 0.6	62.7 ± 0.8	$\textbf{72.6} \pm \textbf{1.5}$	$\textbf{81.3} \pm \textbf{2.1}$	79.9 ±0.7	$\textbf{84.5} \pm \textbf{0.7}$	74.2

[4] <u>GROVER: Self-supervised Message Passing Transformer on</u> <u>Large-scale Molecule Data</u>, NIPS'20 In Submission

- Node/edge level task: subgraph masking
- Graph-level motif prediction

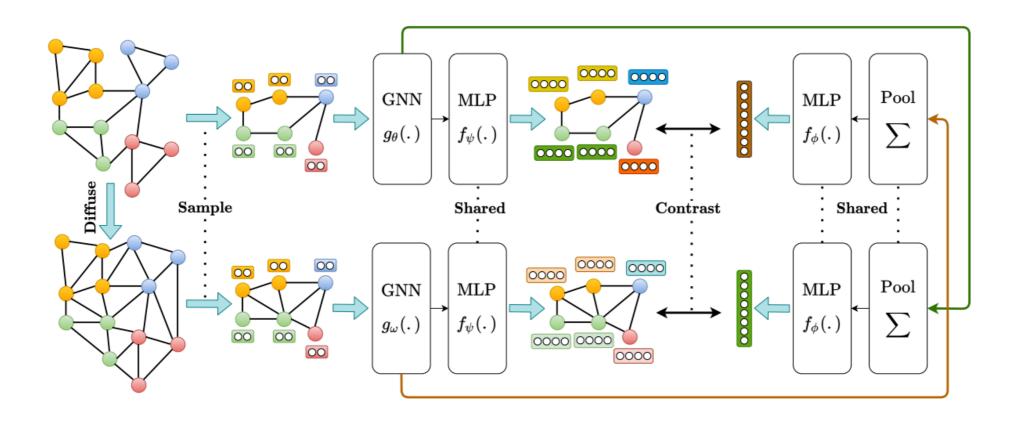


- Other details:
 - A novel base GNN model: dynamic GNN (dyMPN)
 - GNN Transformer
 - ...

[5] <u>Contrastive Multi-View Representation Learning on Graphs</u>, ICML'20

- Graph Diffusion as data/graph augmentation
 - Transform the adjacency matrix to a diffusion matrix
 - Take the two matrices as congruent views of the same graph.

$$\max_{\boldsymbol{\theta},\boldsymbol{\omega},\boldsymbol{\phi},\boldsymbol{\psi}} \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \left[\frac{1}{|g|} \sum_{i=1}^{|g|} \left[\mathsf{MI}\left(\vec{h}_{i}^{\boldsymbol{\alpha}},\vec{h}_{g}^{\boldsymbol{\beta}}\right) + \mathsf{MI}\left(\vec{h}_{i}^{\boldsymbol{\beta}},\vec{h}_{g}^{\boldsymbol{\alpha}}\right) \right] \right]$$



[5] <u>Contrastive Multi-View Representation Learning on Graphs</u>, ICML'20

- Other interesting observations/conclusions:
 - Increasing the number of views doesn't help (for graph).
 - A simple readout is better than complicated pooling functions like DiffPool.
 - Applying regularization or normalization has a negative effect. (?)

- Backgrounds for Contrastive Learning
- Applications for Contrastive Learning on Images and Graphs
- Some Deeper Insights
- Comments

- [1] On Mutual Information Maximization For Representation Learning
- [2] <u>Understanding Contrastive Representation Learning</u> <u>through Alignment and Uniformity on the Hypersphere</u>
- [3] <u>Bootstrap Your Own Latent A New Approach to Self-</u> <u>Supervised Learning</u>
- [4] <u>When Does Self-Supervision Help Graph Convolutional</u> <u>Networks?</u>

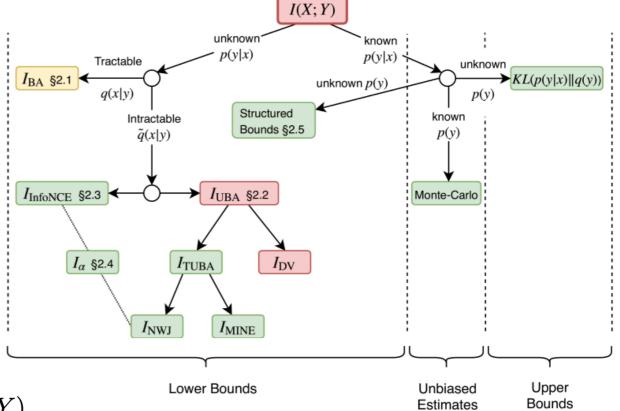
[1] <u>On Mutual Information Maximization For Representation</u> <u>Learning</u>, ICLR'20

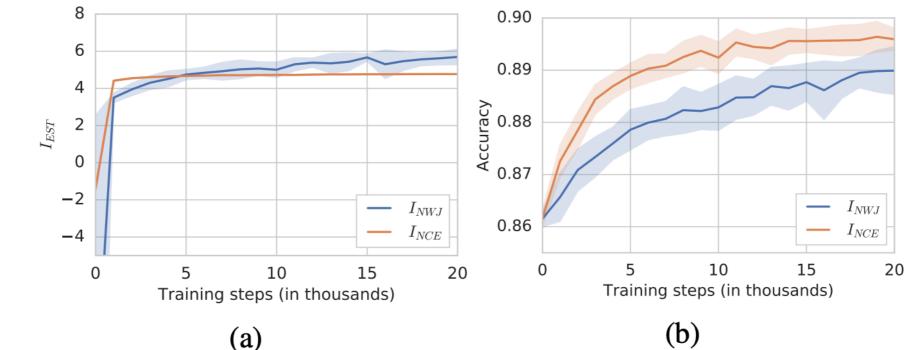
- Various bounds on mutual information
- InfoNCE

 $I(X;Y) \geq \mathbb{E}\left[\frac{1}{K}\sum_{i=1}^{K}\log\frac{e^{f(x_i,y_i)}}{\frac{1}{K}\sum_{j=1}^{K}e^{f(x_i,y_j)}}\right] \triangleq I_{\text{NCE}}(X;Y),$

• Variational form of KL-D (NWJ)

 $I(X;Y) \geq \mathbb{E}_{p(x,y)}[f(x,y)] - e^{-1}\mathbb{E}_{p(x)}[\mathbb{E}_{p(y)}e^{f(x,y)}] \triangleq I_{\mathrm{NWJ}}(X;Y).$





Observation:

[1] <u>On Mutual Information Maximization For Representation</u> <u>Learning</u>, ICLR'20

- Connection to Deep Metric Learning
 - InfoNCE

$$I_{\text{NCE}} = \mathbb{E}\left[\frac{1}{K} \sum_{i=1}^{K} \log \frac{e^{f(x_i, y_i)}}{\frac{1}{K} \sum_{j=1}^{K} e^{f(x_i, y_j)}}\right] = \log K - \mathbb{E}\left[\frac{1}{K} \sum_{i=1}^{K} \log \left(1 + \sum_{j \neq i} e^{f(x_i, y_j) - f(x_i, y_i)}\right)\right].$$

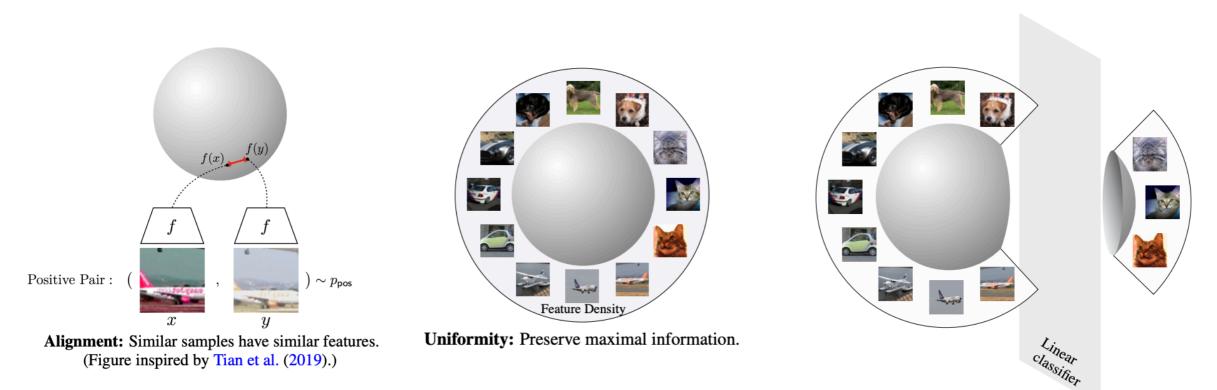
• Multi-class K-pair loss (?)

$$L_{\text{K-pair-mc}}\left(\{(x_i, y_i)\}_{i=1}^K, \phi\right) = \frac{1}{K} \sum_{i=1}^K \log\left(1 + \sum_{j \neq i} e^{\phi(x_i)^\top \phi(y_j) - \phi(x_i)^\top \phi(y_i)}\right).$$

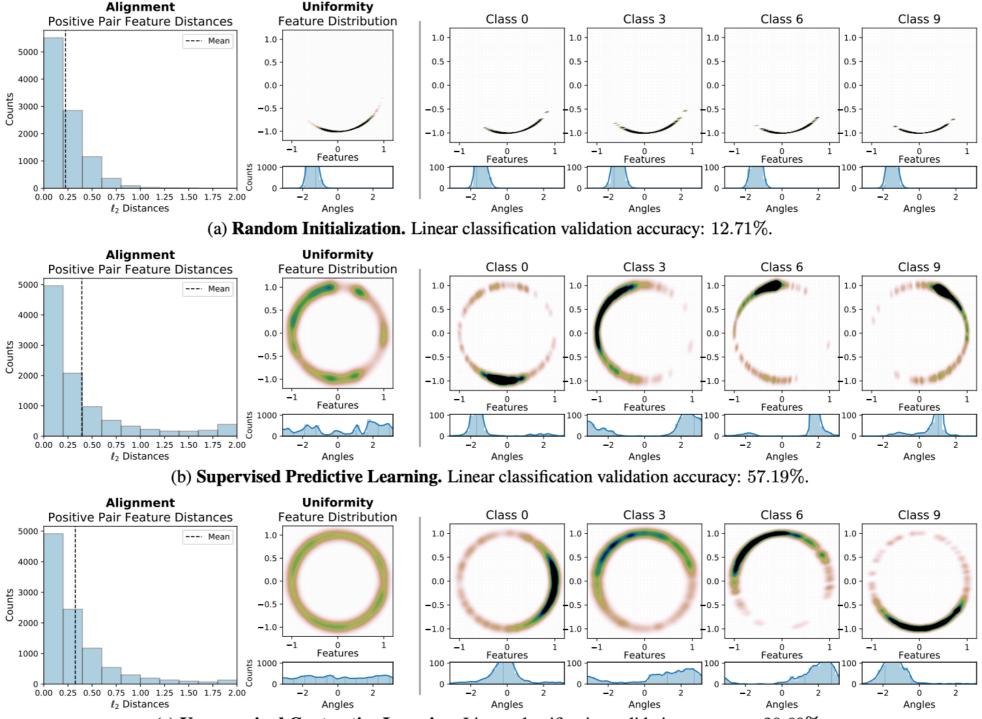
• Maximizing InfoNCE by using a critic $f(x, y) = \phi(x)^T \phi(y)$, thus is equivalent to metric learning.

[2] <u>Understanding Contrastive Representation Learning</u> <u>through Alignment and Uniformity on the Hypersphere</u>, ICML'20

- $L_{contrastive} = \mathbb{E}_{(x,y) \sim p_{pos}}[-f(x)^T f(y)/\tau] + \mathbb{E}_{(x,y) \sim p_{pos}, x \sim p_{data}}[\log(\exp(f(x)^T f(y)/\tau) + \sum_i \exp(f(x)^T f(x_i)/\tau))]$
- Two key properties of contrastive loss, with metric to quantify each property
 - Alignment/closeness: Learned pos pairs should be similar, thus invariant to noise factors. $L_{align}(f) = -\mathbb{E}_{(x,y)\sim p_{pos}}[\|f(x) - f(y)\|_{2}^{\alpha}], \alpha > 0$
 - Uniformity: features should be roughly uniformly distributed on the unit hypersphere. $L_{uniform} = \log \mathbb{E}_{(x,y) \sim p_{data}} [\exp(-t || f(x) - f(y) ||_2^2)], t > 0$



[2] <u>Understanding Contrastive Representation Learning</u> through Alignment and Uniformity on the Hypersphere, ICML'20



(c) Unsupervised Contrastive Learning. Linear classification validation accuracy: 28.60%.

[2] <u>Understanding Contrastive Representation Learning</u> <u>through Alignment and Uniformity on the Hypersphere,</u> ICML'20

• InfoMax principle: maximizing the mutual information $\max I(f(x), f(y)), \forall (x, y) \sim p_{pos}.$

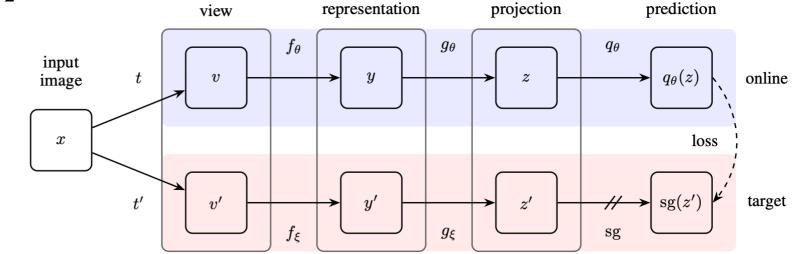
$$\begin{split} \lim_{M \to \infty} \mathcal{L}_{\text{contrastive}}(f;\tau,M) &- \log M = \\ &- \frac{1}{\tau} \mathop{\mathbb{E}}_{(x,y) \sim p_{\text{pos}}} [f(x)^{\mathsf{T}} f(y)] \\ &+ \mathop{\mathbb{E}}_{x \sim p_{\text{data}}} \left[\log \mathop{\mathbb{E}}_{x^{-} \sim p_{\text{data}}} \left[e^{f(x^{-})^{\mathsf{T}} f(x) / \tau} \right] \right] \end{split}$$

- Theorem 1: Perfectly alignment and perfectly uniform are solutions to the first and second term.
- This paper concludes: Instead of interpreted with InfoMAX, what contrastive loss doing is to learn an aligned and information-preserving encoder.

[3] <u>Bootstrap Your Own Latent A New Approach to Self-</u> <u>Supervised Learning</u>, In Submission NeurIPS'20

- Comparison between BYOL and contrastive learning
 - No negative sampling
 - More robust to the choice of image augmentation
 - Iteratively refine its representation
- Two networks and two views.
 - 1. Online network: $v_1 \rightarrow f_{\theta}, g_{\theta} \rightarrow z_1$
 - 2. Target network: $v_2 \rightarrow f_{\xi}, g_{\xi} \rightarrow z_2$
 - 3. Use online network (representation) to predict target network (representation) $\|\bar{q}_{\theta}(z_1) - \bar{z}_2\|^2 = 2 - 2 \cdot \frac{q_{\theta}(z_1)^T, z_2}{\|q_{\theta}(z_1)\|_2 \|z_2\|_2}$
- Above is v_1 on online network and v_2 on target network. A symmetric loss is also included.

Note: This is Self-Training, No Contrasting Note: SimCLR suggests adding projection

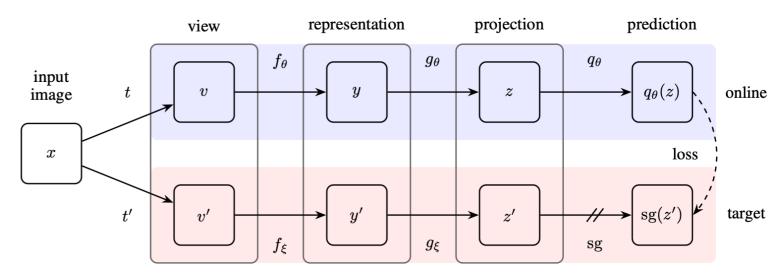


[3] <u>Bootstrap Your Own Latent A New Approach to Self-</u> <u>Supervised Learning</u>, In Submission NeurIPS'20

- Update target weights: $\xi \leftarrow \tau \xi + (1-\tau) heta.$
- Goal: *y* as the final representation
- An ablation study:
 - Randomly initialized network is uniform, but not well aligned. (?)
 - Applying BYOL with $\tau = 1$ does learn a useful representation.

Target	$ au_{ ext{base}}$	Top-1
Constant random network	1	$18.8{\pm}0.7$
Moving average of online	0.999	69.8
Moving average of online	0.99	72.5
Moving average of online	0.9	68.4
Stop gradient of online [†]	0	0.3

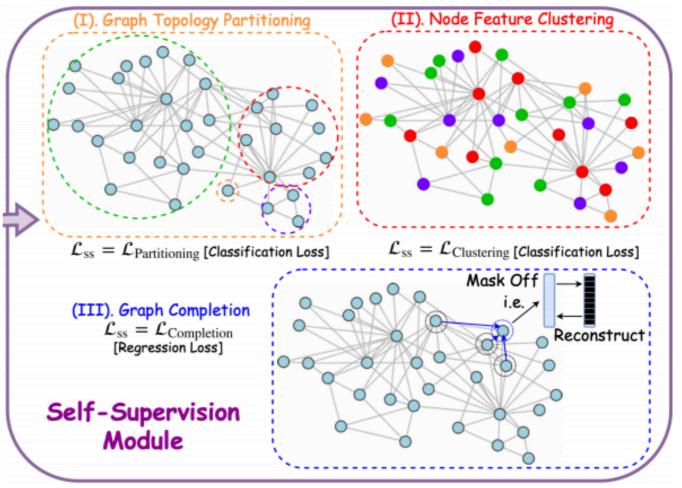
- Explanation, follow the idea from [2]:
 - BYOL is explicitly doing alignment, no uniformity.
 - (Conjecture): Moving average is scattering features, implicitly doing uniformity.



- Motivation:
 - Consider transductive semi-supervised setting for GCN: which makes predictions on unlabeled data (nodes/edges)
 - Self-supervised learning is better at utilizing the unlabeled data
- Three schemes to combine self-supervision and our target task
 - Pre-training & fine-tuning: sequentially transfer
 - Self-training: incrementally transfer
 - Multi-task learning: simultaneously transfer

- Three pretext tasks:
 - Node clustering: nodes with similar features tend to be similar
 - Graph partitioning: nodes with more connections tend to be similar (similar to node clustering, while the objective is to minimize edgecut)
 - Graph completion: masking and reconstruction

• (Adversarial Defense)



- Experiment 1
 - 3 schemes: pre-training & fine-tuning (**P&F**), self-training (**M3S**), multi-task (**MTL**)
 - 3 pretext tasks: Node **Clu**stering, Graph **Par**titioning, Graph **Comp**letion
 - Conclusion:
 - P&F does help, but not on larger datasets like Citeseer and PubMed.
 - Conjecture: though pre-training can learn graph structure, such info will be lost during fine-tuning; GCN is too shallow
 - MTL is more general

	Cora	Citeseer	PubMed	
GCN	81.00 ± 0.67	70.85 ± 0.70	79.10 ± 0.21	
	81.5	70.3	79.0	
P&F-Clu	81.83 ± 0.53	71.06 ± 0.59	79.20 ± 0.22	
P&F-Par	81.42 ± 0.51	70.68 ± 0.81	79.19 ± 0.21	
P&F-Comp	81.25 ± 0.65	71.06 ± 0.55	79.19 ± 0.39	
M3S	81.60 ± 0.51	71.94 ± 0.83	79.28 ± 0.30	
MTL-Clu	81.57 ± 0.59	70.73 ± 0.84	78.79 ± 0.36	
MTL-Par	81.83 ± 0.65	71.34 ± 0.69	80.00 ± 0.74	
MTL-Comp	81.03 ± 0.68	71.66 ± 0.48	79.14 ± 0.28	

- Experiment 2: MTL on SOTA
- Par is generally beneficial to all SOTAs
 - 1. Clu is not working because feature dim is low while dataset is large
 - 2. Topology-based Par has a general assumption
 - 3. The potential benefits of Comp can benefit other tasks

(adversarial robustness)

Datasets	Cora	Citeseer	PubMed
GCN	81.00 ± 0.67	70.85 ± 0.70	79.10 ± 0.21
GCN+Clu	$\overline{81.57}\pm0.59$	70.73 ± 0.84	$\overline{78.79 \pm 0.36}$
GCN+Par	81.83 ± 0.65	71.34 ± 0.69	80.00 ± 0.74
GCN+Comp	81.03 ± 0.68	71.66 ± 0.48	79.14 ± 0.28
GAT	77.66 ± 1.08	68.90 ± 1.07	78.05 ± 0.46
GAT+Clu	$\overline{79.40} \pm \overline{0.73}$	$\boxed{\overline{69.88} \pm \overline{1.13}}$	$\overline{77.80 \pm 0.28}$
GAT+Par	80.11 ± 0.84	69.76 ± 0.81	80.11 ± 0.34
GAT+Comp	80.47 ± 1.22	70.62 ± 1.26	77.10 ± 0.67
GIN	77.27 ± 0.52	68.83 ± 0.40	77.38 ± 0.59
GĪN+Clu	$\overline{78.43} \pm \overline{0.80}$	$\boxed{\overline{68.86} \pm \overline{0.91}}$	$\overline{76.71 \pm 0.36}$
GIN+Par	81.83 ± 0.58	71.50 ± 0.44	80.28 ± 1.34
GIN+Comp	76.62 ± 1.17	68.71 ± 1.01	78.70 ± 0.69
GMNN	83.28 ± 0.81	72.83 ± 0.72	81.34 ± 0.59
\overline{GMNN} + \overline{Clu}	$\overline{83.49}\pm\overline{0.65}$	$\boxed{7\overline{3}.\overline{13} \pm \overline{0.72}}$	$\overline{79.45 \pm 0.76}$
GMNN+Par	83.51 ± 0.50	73.62 ± 0.65	80.92 ± 0.77
GMNN+Comp	83.31 ± 0.81	72.93 ± 0.79	81.33 ± 0.59
GraphMix	83.91 ± 0.63	74.33 ± 0.65	80.68 ± 0.57
GraphMix+Clu	$\overline{83.87 \pm 0.56}$	75.16 ± 0.52	$\overline{79.99 \pm 0.82}$
GraphMix+Par	84.04 ± 0.57	74.93 ± 0.43	81.36 ± 0.33
GraphMix+Comp	83.76 ± 0.64	74.43 ± 0.72	80.82 ± 0.54

- Backgrounds for Contrastive Learning
- Applications for Contrastive Learning on Images and Graphs
- Some Deeper Insights
- Comments

Conclusions and some thoughts:

- Understanding the role of contrastive learning is important, yet still an open question.
- More domain knowledge on molecular graph. (scaffold in GROVER)
- Other details:
 - Pre-training & multi-task learning.
 - Negative sampling. (MoCo, BYOL)
 - The connection between base model (GNN model) and contrastive methods, and how they are combined to affect the performance.

More details can be found in group slack or <u>https://chao1224.github.io/material/slides/202006.pdf</u>