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Co-Training
Combining Labeled and Unlabeled Data with Co-Training, COLT 1998

e Co-training assumption f(x) = fi(v;) = fr,(v5), Vx = (v, v,) ~ X
1. Learn a separate classifier for each view on S (labeled data)

2. Predictions of two classifiers on U (unlabeled data) are gradually added

to S

* Two views are different and provide complementary info


https://www.cs.cmu.edu/~avrim/Papers/cotrain.pdf

Co-Training

Deep Co-Training for Semi-Supervised Image Recognition, ECCV 2018

 View Difference Constraint assumption (encourages the networks to be different)
31X, fi(v) £ H(n), VX = (v, ) ~ X

e Deep Co-Training

Co-training assumption: different views agree on predictions

L@ = H( (00 + pa(a) =5 (H(py ) + H(p)

View Difference Constraint:

e Adversarial images D’where p,(x) # p,(x),Vx € D'ie,.DND =&

e Adversarialimages D' = {g(x)|x € D}

e g(x) is an adversarial example that fools the network p, but not network p,

e Thus we propose to train the network p, to be resistant to adversarial examples g,(x)
of p, by minimizing the CE between p,(x) and p,(g,(x)),

1 1
L(x) = H(E(pl(x) + Pz(gl(x)))) + H(E(Pz(x) + Pl(gz(x))))


http://openaccess.thecvf.com/content_ECCV_2018/papers/Siyuan_Qiao_Deep_Co-Training_for_ECCV_2018_paper.pdf

Knowledge Distillation
Distilling the Knowledge in a Neural Network, NIPS’15 Workshop

Geoffrey Hinton, etc.

Transfer knowledge from teacher (cumbersome model) to student (distilled

model)
ZT ZS
. Knowledge Distillation: £ = (1 — a)H(y,yS) + asz(a(—), o(—)),
p p
T S T S T
where H(o(-=), 6(*2)) = KL(6(*=), 6(*=)) + H(c(*=))
p p p P p

Notice: Matching logits is a special case of distillation

https://nervanasystems.github.io/distiller/knowledge distillation.html#hinton-et-al-2015



https://arxiv.org/pdf/1503.02531.pdf
https://arxiv.org/pdf/1503.02531.pdf
https://nervanasystems.github.io/distiller/knowledge_distillation.html#hinton-et-al-2015
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Canonical Correlation Analysis (CCA)
Relations between two sets of variates, Biometrika 1936

Deep Canonical Correlation Analysis, ICML13
On deep multi-view representation learning, ICML’15

e CCA

T
S k) — 1TX TX _ Wi EIZWZ
(w ’Wz) = arg max corr(wl” X;,w, X,) = arg max

e e \/ wiZ  wlwlZ,ow,
* Solution:
R %
o U, V, aretop k left- and right- singular values of T

. (A¥,A¥) = (ZPULZL7 V)


https://ttic.uchicago.edu/~klivescu/papers/andrew_icml2013.pdf
http://proceedings.mlr.press/v37/wangb15.pdf

Canonical Correlation Analysis (CCA)
Relations between two sets of variates, Biometrika 1936

Deep Canonical Correlation Analysis, ICML13
On deep multi-view representation learning, ICML’15

Deep CCA (w*, w;k) = arg max corr(f{(X;; 0,), f,(X5; 65))

Wi,Woy

e Solution:

 H,, H, are feature matrices
_ 1 _ 1
m m
. I e o
— 1 m— 1
e T = Z 1/22122—1/2

e corr(H,H,) = ||T|,, = tr(T'T)"?

dcorr(H, H,) 1 _ _ Odcorr(H|, H,)
. = —(2 Vi H, + V,H)y,
OHI m — 0H2

1
——QVyfl, + Vo )


https://ttic.uchicago.edu/~klivescu/papers/andrew_icml2013.pdf
http://proceedings.mlr.press/v37/wangb15.pdf
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InfoNCE

[1] Representation learning with contrastive predictive coding (CPC), ArXiv’19
[2] Learning Deep Representations By Mutual Information Estimation and Maximization (DIM), ICLR’19
[3] On variational bounds of mutual information, ICML’19
[4] A Simple Framework for Contrastive I.earning of Visual Representations (SimCLR), ICML’20

[*] Noise-contrastive estimation: A new estimation principle for unnormalized statistical models (NCE),
AISTAT’10

ho(vi, vs) ]
> vl )

o I(z;;7) 2 1og(k) — ZLcontrast

gcontrast - = E[


https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1808.06670.pdf
https://arxiv.org/pdf/1905.06922.pdf
https://arxiv.org/abs/2002.05709
http://proceedings.mlr.press/v9/gutmann10a/gutmann10a.pdf

[5] Unsupervised feature learning via non-parametric instance
discrimination, CVPR’18

Zhirong Wu, etc.

 Observation: class-level classification can implicitly learn class-wise similarity
* For aleopard image, the confidence is leopard > jaguar > bookcase
e Extend this to the instance-level:

* instance-level classification can implicitly learn the instance-wise similarity

e Memory bank: @, f; are updated with SGD first, then f; = v,

exp(v fi/7)
Z;lzl exp(v! fi/7)
e Too many classes / n is too large => NCE
P@i|v)
P(i|v) + mP,(i)
Ince(0) = — Ep [log h(i, v)] — mEp [log(1 — h(i, v))]

Not between views, but between instances

P@ilf) =

J(0) = = ) log Pi| fyx,)
i=1

h(i;v)=PD =1]i,v) =


http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/0801.pdf
http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/0801.pdf

[6] Local Aggregation for Unsupervised Learning of Visual

Embeddings, ICCV’19
Chengxu Zhang, etc. Stanford

Local Aggregation: contrastive learning on class

B, : k nearest neighbors to x;

C; : the set of nodes belong to the same cluster as x;

(usually C; is a subset of B))

. . exp(viv/t)
P(A|v) = p(i|v), where p(i|v) =
. zl: ZJ. exp(vIv/7)
P(B;|v))

» B;is background neighbors/sampled pairs

e (,is close neighbors/positive pairs.

Not between views, but between instances


https://arxiv.org/pdf/1903.12355.pdf
https://arxiv.org/pdf/1903.12355.pdf

[7] Contrastive Multi-View Coding, ArXiv’19
Yonglong Tian, Dilip Krishnan, Phillip Isola

1,1
Vl’VZ — he(V1 , VQ«)
g — [E{ k+1}
e ~ contrast VY2 VDoV 1y J
Z o(Vi, vh)
— PV, Vo,V
o ZLeontrast gcontrast + 3contrast

o 1(z;;z) = log(k) — Lcontrast


https://arxiv.org/pdf/1906.05849.pdf

[8] Contrastive Representation Distillation, ICLR’20
Yonglong Tian, Dilip Krishnan, Phillip Isola

T S
. Knowledge Distillation: &4, = (1 — @)H(y, y°) + asz(a(Z—), G(Z—))
p p
%" = argmaxmax Z..... (h)
oo
o = arg n}%x m}?X E,r.s1c=nllog i(T, S)] + NE (7. 51c=0)[l0g(1 — (T, S))]
exp((g"(T)'3(5)%)/7)

. (T, S) = ,
exp((g7(T)'g(S)S)/t) + NIM


https://arxiv.org/pdf/1910.10699.pdf

[9] Supervised Contrastive Learning, ArXiv’20
Google Research, Yonglong Tian, Phillip Isola, etc.

2N

1sup — Z .5up
o i
i=1

. 1 ZN exp(z; - z;/7)
o L= o ) Ll log
Yi

2N
j=1 2y Lz €XP(z; - 7 /7)
e |nfoNCE is motivated by NCE and N-pair losses: IREELIL I T LT EL Dtage 2 .
@ 0g ii
One important property: Softmax |

1000-D g
hd

The ability to discriminate between signal and noise (negatives)

Is obtained by adding more negative examples.

(c¢) Supervised Contrastive


https://arxiv.org/pdf/2004.11362.pdf

[10] On Mutual Information in Contrastive Learning for Visual
Representations, NIPS’20 In Submission
Mike Wu, Chengxu Zhang, etc., Stanford

 Three types of contrastive learning (IR, LA, CMC) are equivalent with InfoNCE

 (Choices of views and negative sample distribution influence the performance


https://arxiv.org/pdf/2005.13149.pdf
https://arxiv.org/pdf/2005.13149.pdf

[11] On Mutual Information Maximization for Representation
Learning, ICLR’20
Michael Tschannen, etc.

Maximizing Ml is not directly connected to the improved downstream
performance

Looser bounds with simpler critics can lead to better representations
Connection between INfoNCE and deep metric learning
* The deep metric learning
L= %Z K log(1+ Y exp(p(x) p(y) — p(x) p(3)))
i=1 j#i
« criticis f(x,y) = ¢(0) P(y)
e Then Iy r is equivalent to metric learning

* Add more negative samples may not help


https://arxiv.org/pdf/1907.13625.pdf
https://arxiv.org/pdf/1907.13625.pdf

[12] Understanding Contrastive Representation Learning
through Alignment and Uniformity on the Hypersphere,
ICML’'20
Tongzhou Wang, Phillip Isola

o Leonasiive = Eayyp, [ fO/T1 + By o [og(exp(f(x)' f(3)/7) + Z exp(f(x)" f(x)/7))]

e Two key properties of contrastive loss, with metric to quantify each property

e Alignment/closeness: Learned pos pairs should be similar, thus invariant to noise factors.

Lusign() = = Exyyep,, LIF) = fWIIS] 2 > 0

. Uniformity: features should be roughly uniformly distributed on the unit hypersphere.
Luniform = lOg [E(x,y)rvpdam[exp(_t”f(x) _f(y)”%)]at >0

Alignment Uniformity

Instead of interpreted with InfoMAX, what contrastive loss doing
(2) Random Initialization. Linear classification validation accuracy: 12.71%.
. . B . . Alignment Uniform?ty ]
is to learn an aligned and information-preserving encoder. costye Pelr Festre Biarces /Db F M ey M C'a“g\
(perfectly uniform is the most entropic) o N ( N N '
0 -1.0 - - v 1.0 > +1.0 1.0
. ‘ [ S— OSSN AN [ S0\ i DR A N et I W
o (b) Supervised Predi;iieée Learning. Linear r<|:gl:ssiﬁcation validan:ii)sn accuracy: 57.1998‘%. -
Alignment Uniformity
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https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242
https://arxiv.org/abs/2005.10242

[13] What Makes for Good Views for Contrastive Learning?,
ArXiv’20
Yonglong Tian, Phillip Isola, etc.

* |InfoMin Principle:
 Keep task-relevant semantics
* Reduce the mutual information between views
 => minimal sufficient encoders will ignore task-irrelevant information

 => minimal sufficient encoders are still able to predict y


https://arxiv.org/pdf/2005.10243.pdf

[14] Bootstrap Your Own Latent A New Approach to Self-

Supervised Learning, In Submission NeurlPS’20

e Comparison between BYOL and contrastive learning

 No Negative Sampling

 More robust to the choice of image augmentation

e [teratively refine its representation

e Two networks and two views.

1. Online network: v; — fo, g8y = 24

2. Target network: v, = f., g: = 2,

3. Use online network (representation) to predict target network (representation)

QQ(ZI )T, Z2

1Go(z) — 21> =2-2"
sl 1geGDI 1221

Moving average is scattering features.

input
image

Note: SImCLR suggests adding projection

BYOL is explicitly doing alignment, no uniformity.
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https://arxiv.org/pdf/2006.07733.pdf
https://arxiv.org/pdf/2006.07733.pdf

[15] Big Self-Supervised Models are Strong Semi-Supervised
Learners, In Submission NeurlPS’20

e | abeled data for teacher network, unlabeled data for student network.
e 3 steps:
exp(sim(z;, zj)/ T)

1. Pre-train L = log v
zkzl 1k7éi eXp(Siﬂ”l(Zi, Zj)/T)

2. Fine-tune

3. Distill L5t = Z [Z P7(y|x; 0)log PS(y|x; 7)|, where

exp(f(x)[y1/7)
> exp(f)D 1)

P(y|x) =


https://arxiv.org/pdf/2006.10029.pdf
https://arxiv.org/pdf/2006.10029.pdf

