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1. Introduction

• Report: A Tough Road: Cost To Develop One New Drug Is $2.6 Billion:

• Average length: 10-12 years, average cost: ~US $2.6 billion.


• Solution: AI-guided drug discovery:

• Ongoing and promising.

• Can accelerate multiple stages.

3
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2. Motivation

Q: How to handle such low-data issue? 

A: Transferring knowledge.

• Self-supervised (unsupervised) pre-training:


• Pre-training: patterns (CV), semantics (NLP), structures (Graph).

• Fine-tuning: smaller dataset.


• Multi-task learning:

• Joint learning.

• Improved general performance.
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2. Motivation
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:      node representation 
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2. Motivation Q: Can we better utilize 
the domain knowledge for transferring?
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3. SSL for Molecular Property Prediction

3.1 Problem Definition 
3.2 Motivation 
3.3 Related Work 
3.4 Preliminaries 
3.5 Method: GraphMVP 
3.6 Experiments 

Self-Supervised Learning - Theory and Practice, NeurIPS 2021 Workshop; In Submission to ICLR’22 
Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, Jian Tang
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3.1 Problem Definition

Ultimate goal:

•Molecular property prediction on target (downstream) tasks.

•MoleculeNet [1]: only 2D topological information for molecular graph is available.


Backgrounds:

• 3D geometric information is useful for molecular property prediction [2, 3], but 

expensive to obtain via physical experiments or simulation.

• Existing SSL methods on graph are focusing on the 2D topology.


[1] Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning." Chemical science 9.2 (2018): 513-530. 
[2] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." International conference on machine learning. PMLR, 2017. 
[3] Liu, Shengchao, Mehmet F. Demirel, and Yingyu Liang. "N-gram graph: Simple unsupervised representation for graphs, with applications to molecules." Advances in neural information processing systems 32 (2019).
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3.2 Motivation

Q: Suppose we have a larger/pre-training dataset with both 2D and 3D info, and 
can we apply extra 3D info to help smaller/downstream tasks? 
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3.2 Motivation

Q: Suppose we have a larger/pre-training dataset with both 2D and 3D info, and 
can we apply extra 3D info to help smaller/downstream tasks? 

A: We adopt these two views (2D and 3D) and propose Graph Multi-View Pre-
training (GraphMVP).

• Pre-training: propose two SSL tasks on both 2D and 3D graph.

• Fine-tuning: downstream tasks with 2D graph only.
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3.3 Related Work
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3.4 Preliminaries

Notations:

• : atom (node) attributes.


• : bond (edge) attributes.


• : atom (node) positions.


Molecule as 2D topological graph:

•  for a 2D molecular graph.


•  for 2D representation, .


Molecule as 3D geometric graph:

•  for a 3D molecular graph.


•  for 3D representation, .


• Conformers.

A
E
R

x
hx hx = 2D-GNN(A, E)

y
hy hy = 3D-GNN(A, R)

From [1] Axelrod, Simon, and Rafael Gomez-Bombarelli. "GEOM: Energy-annotated molecular conformations for property 
prediction and molecular generation." arXiv preprint arXiv:2006.05531 (2020).
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3.4 Preliminaries

Energy-Based Model (EBM): where  is the energy function, 

and the bottleneck is the intractable partition function .


Solutions:

• Noise-Contrastive Estimation (NCE) [1, 2]

• Contrastive Divergence

• Score Matching

•…


[1] Liu, Shengchao, et al. "Pre-training Molecular Graph Representation with 3D Geometry." arXiv preprint arXiv:2110.07728 (2021).

[2] Gutmann, Michael, and Aapo Hyvärinen. "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." Proceedings of the thirteenth international conference on artificial intelligence and 
statistics. JMLR Workshop and Conference Proceedings, 2010.

p(x) =
exp(−E(x))

A
, E(x)

A = ∫x
exp(−E(x))dx
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3.5 Method: GraphMVP

3.5.1 MI and SSL 
3.5.2 Contrastive SSL 
3.5.3 Generative SSL 
3.5.4 Multi-task Objective
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3.5.1 MI and SSL

Mutual information (MI):

• measures the non-linear dependence between variables.

• the larger MI, the stronger dependence between variables.


Maximizing MI between 2D and 3D views.

• Expect: obtain a more robust 2D representation by sharing more information with 

its 3D counterparts.

4

H(X) H(Y )

H(X, Y )

H(X |Y ) H(Y |X )I(X; Y )
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3.5.1 MI and SSL




How to estimate this lower bound?

I(X; Y) = 𝔼p(x,y)[log
p(x, y)

p(x)p(y) ]
≥ 𝔼p(x,y)[log

p(x, y)
p(x)p(y) ]

=
1
2

𝔼p(x,y)[log
(p(x, y))2

p(x)p(y) ]
=

1
2

𝔼p(x,y)[log p(x |y)] +
1
2

𝔼p(x,y)[log p(y |x)] .
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3.5.1 MI and SSL




How to estimate this lower bound?

GraphMVP proposes 1 contrastive and 1 generative SSL to estimate it, mainly on modeling the 
conditional log-likelihood term.


I(X; Y) = 𝔼p(x,y)[log
p(x, y)

p(x)p(y) ]
≥ 𝔼p(x,y)[log

p(x, y)
p(x)p(y) ]

=
1
2

𝔼p(x,y)[log
(p(x, y))2

p(x)p(y) ]
=

1
2

𝔼p(x,y)[log p(x |y)] +
1
2

𝔼p(x,y)[log p(y |x)] .
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3.5.2 Contrastive SSL

Lower bound on MI:


.


If we model the conditional log-likelihood term with energy-based model (EBM):


.

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

ℒEBM = −
1
2

𝔼p(x,y)[log
fx(x, y)

Ax|y
+ log

fy(y, x)
Ay|x

]
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3.5.2 Contrastive SSL

Lower bound on MI:


.


If we model the conditional log-likelihood term with energy-based model (EBM):


.


Then with NCE, we have the final objective as EBM-NCE:





where  is the data distribution,  is the noise distribution,  .

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

ℒEBM = −
1
2

𝔼p(x,y)[log
fx(x, y)

Ax|y
+ log

fy(y, x)
Ay|x

]

ℒEBM-NCE = −
1
2

𝔼pdata(y)[𝔼pn(x|y)[log(1 − σ( fx(x, y)))] + 𝔼pdata(x|y)[log σ( fx(x, y))]]
−

1
2

𝔼pdata(x)[𝔼pn(y|x)[log(1 − σ( fy(y, x)))] + 𝔼pdata(y|x)[log σ( fy(y, x))]],

pdata pn fx(x, y) = fy(y, x) = ⟨hx, hy⟩

22



3.5.2 Contrastive SSL

Lower bound on MI:


.


If we model the conditional log-likelihood term with energy-based model (EBM):


.


Then with NCE, we have the final objective as EBM-NCE:





where  is the data distribution,  is the noise distribution,  .

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

ℒEBM = −
1
2

𝔼p(x,y)[log
fx(x, y)

Ax|y
+ log

fy(y, x)
Ay|x

]

ℒEBM-NCE = −
1
2

𝔼pdata(y)[𝔼pn(x|y)[log(1 − σ( fx(x, y)))] + 𝔼pdata(x|y)[log σ( fx(x, y))]]
−

1
2

𝔼pdata(x)[𝔼pn(y|x)[log(1 − σ( fy(y, x)))] + 𝔼pdata(y|x)[log σ( fy(y, x))]],

pdata pn fx(x, y) = fy(y, x) = ⟨hx, hy⟩

23



3.5.2 Contrastive SSL

EBM-NCE & Jensen-Shannon Estimation (JSE) 
The formulations are similar, while there are 3 main differences:

• Derivation and intuition:


• JSE: f-divergence, variational estimation, Fenchel duality.

• EBM-NCE: MI lower bound, EBM, NCE.


• Noise distribution:

• JSE: MINE [1], empirical distribution for noise distribution.

• EBM-NCE: recent work [2] extends it with adaptively learnable noise distribution.


• Flexibility:

• EBM: score matching, contrastive divergence, etc.


[1] Belghazi, Mohamed Ishmael, et al. "Mine: mutual information neural estimation." arXiv preprint arXiv:1801.04062 (2018).

[2] Arbel, Michael, Liang Zhou, and Arthur Gretton. "Generalized energy based models." arXiv preprint arXiv:2003.05033 (2020). 
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3.5.2 Contrastive SSL

EBM-NCE & InfoNCE 
Both EBM-NCE and InfoNCE are aligning the positive pairs and contrasting the 
negative pairs.

Take either one of them for contrastive SSL, i.e., 


  or  .
ℒC = ℒInfoNCE ℒC = ℒEBM-NCE

x 2D GNN 3D GNN y

Align 

Contrast
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3.5.3 Generative SSL

Lower bound on MI:


.


Variational Molecule Reconstruction 
We introduce a variational distribution :


.

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

zx = μx + Σx ⊙ ϵ
log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |x, zx)] − KL(q(zx |x) | |p(zx))
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3.5.3 Generative SSL

Lower bound on MI:


.


Variational Molecule Reconstruction 
We introduce a variational distribution :


.


Benefits:

• Stochastic mapping between 2D and 3D views.

• An explicit representation for transferring to downstream tasks.

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

zx = μx + Σx ⊙ ϵ
log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |x, zx)] − KL(q(zx |x) | |p(zx))

27
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3.5.3 Generative SSL

Lower bound on MI:


.


Variational Molecule Reconstruction 
We introduce a variational distribution :


.


Limitation:

• Reconstruction of structured data. If the target data space is discrete/structured, then 

the modeling and evaluation on this data space is hard.

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

zx = μx + Σx ⊙ ϵ
log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |x, zx)] − KL(q(zx |x) | |p(zx))

Reconstruction
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3.5.3 Generative SSL

Lower bound on MI:


.


Variational Molecule Reconstruction 
We introduce a variational distribution :


.


Solution:

Variational Representation Reconstruction (VRR) 
Let’s transfer the reconstruction from data space to representation space.

I(X; Y) ≥
1
2

𝔼p(x,y)[log p(x |y) + log p(y |x)]

zx = μx + Σx ⊙ ϵ
log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |x, zx)] − KL(q(zx |x) | |p(zx))

Reconstruction
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3.5.3 Generative SSL

Variational Molecule Reconstruction 
.


Variational Representation Reconstruction 
Let’s transfer the reconstruction from data space to representation space.


If is  is continuous, we can use Gaussian for the likelihood:  , where  is the 
decoder.

If is  is discrete and structured, then we propose this surrogate loss: , where 

 is the encoder on .


By approximation: .


Add stop-gradient:  .

log p(y |x) = log 𝔼p(zx)[p(y |x, zx)] ≥ 𝔼q(zx|x)[log p(y |x, zx)] − KL(q(zx |x) | |p(zx))

y ∥y − gx(zx)∥2 gx(zx)

y ∥hy(y) − hy(gx(zx))∥2

hy y
∥hy(y) − qx(zx))∥2

∥SG(hy(y)) − qx(zx))∥2
30
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3.5.3 Generative SSL

Final solution (VRR):





Note: this surrogate loss is exact if /  is continuous invertible.

But empirically, we find GNN is good enough.

ℒG = ℒVRR =
1
2 [𝔼q(zx|x)[∥qx(zx) − SG(hy)∥2] + 𝔼q(zy|y)[∥qy(zy) − SG(hx)∥2

2]]
+

β
2

⋅ [KL(q(zx |x) | |p(zx)) + KL(q(zy |y) | |p(zy))] .

hx hy
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3.5.4 Multi-task Objective

The objective is weighted sum of the contrastive and generative SSL:

.


Contrastive and generative SSL are complementary.

•From representation learning:


•Contrastive SSL is inter-data.

•Generative SSL is intra-data.


•From distribution learning:

•Contrastive SSL is learning distribution in a local way: by contrasting negative pairs.

•Generative SSL is learning distribution in a global way: learning the data density function directly.

ℒGraphMVP = α1 ⋅ ℒC + α2 ⋅ ℒG
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3.6 Experiments

Datasets:

• Pre-training

• GEOM [1], 50k molecules, each with 5 conformers.


• Downstream

• Molecular Property Prediction:

• Physiology: Tox21, ToxCast, ClinTox, BBBP, Sider.

• Physical chemistry: ESOL, Lipophilicity, CEP.

• Biophysics: MUV, BACE, Hiv, Malaria.


• Drug-Target Interaction:

• Davis, KIBA.


Backbone models:

• GIN [2] for 2D GNN.

• SchNet [3] for 3D GNN.


[1] Axelrod, Simon, and Rafael Gomez-Bombarelli. "GEOM: Energy-annotated molecular conformations for property prediction and molecular generation." arXiv preprint arXiv:2006.05531 (2020). 
[2] Xu, Keyulu, et al. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018). 
[3] Schütt, Kristof T., et al. "Schnet–a deep learning architecture for molecules and materials." The Journal of Chemical Physics 148.24 (2018): 241722.
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3.6 Experiments
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4. MTL for Molecular Property Prediction

4.1 Problem Definition 
4.2 Related Work 
4.3 Preliminaries 
4.4 Dataset with Explicit Task Relation 
4.5 Method: SGNN-EBM 
4.6 Experiments 

AI for Science: Mind the Gaps, NeurIPS 2021 Workshop; In Submission to AISTATS’22 
Shengchao Liu, Meng Qu, Zuobai Zhang, Huiyu Cai, Jian Tang
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4.1 Problem Definition

Molecule -> Shared Representation -> Property Prediction on Multiple Tasks
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4.1 Problem Definition

Molecule -> Shared Representation -> Property Prediction on Multiple Tasks


• Useful tool for low-data & missing labels.


• The domain knowledge is rich, can we take better advantage of them?

• What format of domain knowledge we can utilize?

• With the specific format of domain knowledge, how to incorporate them for 

problem solving?
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4.1 Problem Definition

Q: What format of domain knowledge we can utilize? 

38



4.1 Problem Definition

Q: What format of domain knowledge we can utilize? 
A: We can extract task relation graph from domain.
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4.1 Problem Definition

Q: What format of domain knowledge we can utilize? 
A: We can extract task relation graph from domain.


Q: With the specific format of domain knowledge, how to incorporate them for 
problem solving? 
A: We solve this from two directions in modeling the task relation graph:

• Direction 1: modeling in the latent space.

• Direction 2: modeling in the output space.
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4.3 Preliminaries

• molecule: ,  is the node attributes,  is the edge attributes.


•  tasks with -class labels: , where we focus on .


• Graph Neural Network (GNN): GCN[1], GIN[2].


• Energy-Based Model (EBM):


.


[1] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016). 
[2] Xu, Keyulu, et al. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018).

x = (V, E) V E

T C y = {y0, y1, . . . , yT−1} C = 2

pϕ(y |x) =
exp(−Eϕ(x, y))

A
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4.4 Dataset with Explicit Task Relation

456k molecules and 1k tasks from ChEMBL: https://www.ebi.ac.uk/chembl/

Task (protein) reference to STRING: https://string-db.org/


44

https://www.ebi.ac.uk/chembl/
https://string-db.org/


4.5 Method: SGNN-EBM

4.5.1 Input Embedding 
4.5.2 Structured Latent Space Modeling: State Graph Neural Network (SGNN) 
4.5.3 Structured Output Space Modeling: Energy-Based Model (EBM) 
4.5.4 SGNN-EBM
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4.5.1 Input Embedding

Molecule Embedding:

, where 


Task Embedding:

,


where .


Concat these two embeddings as inputs into state GNN (SGNN):





where , .

z(x) = GIN(V, E) z(x) ∈ ℝdm .

[z0, z1, . . . , zT−1] = GCN(task relation graph)
zi ∈ ℝdt

h(0)
i (x) = MLP(0)

n (z(x) ⊕ z(i))

h(0)
ij (x) = MLP(0)

e (z(x) ⊕ z(i) ⊕ z( j)),
MLP(0)

n : ℝdm+dt → ℝC×d MLP(0)
e : ℝdm+2dt → ℝC×C×d
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4.5.2 Structured Latent Space Modeling: SGNN

State Graph Neural Network (SGNN) 

• State on the input layer:





•Message passing:


h(0)
i (x, yi) = h(0)

i (x)[yi]

h(0)
ij (x, yi, yj) = h(0)

ij (x)[yi, yj] .

h(l+1)
i (x, yi) = MPNN(l+1)

n (h(l)
i (x, yi), {h(l)

ij (x, yi, yj) ∣ ∀j, yj})
h(l+1)

ij (x, yi, yj) = MPNN(l+1)
e (h(l)

i (x, yi), h(l)
j (x, yj), h(l)

ij (x, yi, yj)) .
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4.5.3 Structured Output Space Modeling: EBM

Energy-Based Model (EBM) 

• Energy function





• EBM likelihood


Eϕ(x, y) = −
T−1

∑
i=0

fi(x, yi) − λ ∑
⟨i,j⟩∈𝒢

fij(x, yi, yj) .

pϕ(y |x) =
exp(∑i fi(x, yi) + ∑ij fij(x, yi, yj))

A
.

48



4.5.4 SGNN-EBM

• SGNN for modeling in the latent space.

• EBM for modeling in the output space.

• The final model is called SGNN-EBM.
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4.5.4 SGNN-EBM

• Learning with EBM-NCE:





• Inference with Gibbs sampling:


ℒNCE = 𝔼y∼pn
log

1
1 + exp(−Eϕ(x, y))

+ 𝔼y∼pdata
log

1
1 + exp(Eϕ(x, y))

.

pϕ(yi |y−i, x) =
exp(fi(x, yi) + ∑⟨i,j⟩∈𝒢 fij(x, yi, yj))

∑C−1
yi=0 exp(fi(x, yi) + ∑⟨i,j⟩∈𝒢 fij(x, yi, yj))

.
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4.6 Experiments

Empirical results on one dataset with three thresholds.
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5. Conclusions & Future Directions

• About SSL on graph:

• We show that 3D information can help 2D representation. Can we show that 2D 

information can help 3D representation? E.g., take downstream with 3D only.

• EBM-NCE connects EBM and SSL, can we try other solutions to EBM?

• Generative SSL (Variational Representation Reconstruction, VRR) contains the 

non-contrastive SSL (e.g., BYOL, SimSiam).

• Q: If BYOL/SimSiam can provide a robust representation, does this mean 

other generative SSL can also reach comparative performance? 

52



5. Conclusions & Future Directions

• About SSL on graph:

• We show that 3D information can help 2D representation. Can we show that 2D 

information can help 3D representation? E.g., take downstream with 3D only.

• EBM-NCE connects EBM and SSL, can we try other solutions to EBM?

• Generative SSL (Variational Representation Reconstruction, VRR) contains the 

non-contrastive SSL (e.g., BYOL, SimSiam).

• Q: If BYOL/SimSiam can provide a robust representation, does this mean 

other generative SSL can also reach comparative performance? 

• A: Yes! This work [1] provides the empirical evidence.


[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv preprint arXiv:2111.06377 (2021).
53



5. Conclusions & Future Directions

• About MTL on graph:

• Can we extend this to different scientific applications?

• Can we learn such task relation graph?

• The extracted task relation is noisy. Can we use the learned task relation to 

help rectify it?
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5. Conclusions & Future Directions

• About MTL on graph:

• Can we extend this to different scientific applications?

• Can we learn such task relation graph?

• The extracted task relation is noisy. Can we use the learned task relation to 

help rectify it?


• More generally:

• Combining SSL and MTL. Now we explore two directions separately. In the 

future, we can combine these two directions into a unified pipeline.

• What other formats of domain knowledge can we utilize? And how to 

incorporate them appropriately with the AI methods?
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