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1. Introduction

e Report: A Tough Road: Cost To Develop One New Drug Is $2.6 Billion:

e Average length: 10-12 years, average cost: ~US $2 6 billion.

e Solution: Al-guided drug discovery:
e Ongoing and promising.
e Can accelerate multiple stages.

Credit to Liu, Shengchao, Deac, Andreea, and Tang, Jian.

“Graph Representation Learning for Drug Discovery." Manuscript.
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2. Motivation

Q: How to handle such low-data issue?

A: Transferring knowledge.
e Self-supervised (unsupervised) pre-training:
e Pre-training: patterns (CV), semantics (NLP), structures (Graph).
 Fine-tuning: smaller dataset.
 Multi-task learning:
e Joint learning.
 Improved general performance.
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2. Motivation

Q: Can we better utilize
the domain knowledge for transferring?
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3. SSL for Molecular Property Prediction

3.1 Problem Definition
3.2 Motivation

3.3 Related Work

3.4 Preliminaries

3.5 Method: GraphMVP
3.6 Experiments

Self-Supervised Learning - Theory and Practice, NeurlPS 2021 Workshop; In Submission to ICLR’22
Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, Jian Tang
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3.1 Problem Definition

Ultimate goal:
e Molecular property prediction on target (downstream) tasks.
e MoleculeNet [1]: only 2D topological information for molecular graph is available.

Backgrounds:

e 3D geometric information is useful for molecular property prediction (2, 3], but
expensive to obtain via physical experiments or simulation.

e Existing SSL methods on graph are focusing on the 2D topology.

[1] Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning." Chemical science 9.2 (2018): 513-530.
[2] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." International conference on machine learning. PMLR, 2017.
[3] Liu, Shengchao, Mehmet F. Demirel, and Yingyu Liang. "N-gram graph: Simple unsupervised representation for graphs, with applications to molecules." Advances in neural information processing systems 32 (2019).

11



3.2 Motivation

Q: Suppose we have a larger/pre-training dataset with both 2D and 3D info, and
can we apply extra 3D info to help smaller/downstream tasks?

&
/C\
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3.2 Motivation

Q: Suppose we have a larger/pre-training dataset with both 2D and 3D info, and
can we apply extra 3D info to help smaller/downstream tasks?
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A: We adopt these two views (2D and 3D) and propose Graph Multi-View Pre-
training (GraphMVP).

e Pre-training: propose two SSL tasks on both 2D and 3D graph.

* Fine-tuning: downstream tasks with 2D graph only.

6\
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3.3 Related Work

SSL Pre-training View Selection SSL Category

2D Topology 3D Geometry Generative Contrastive

v
v
v

EdgePred [1]
AttrMask [2]
GPT-GNN [3]
InfoGraph [4]
ContexPred [2]
GraphLoG [35]
GraphCL [6]
JOAO |7]

GraphMVP (Ours) [9]
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[1] Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017.
[2] Hu, Weihua, et al. "Strategies for pre-training graph neural networks." arXiv preprint arXiv:1905.12265 (2019).

[3] Hu, Ziniu, et al. "Gpt-gnn: Generative pre-training of graph neural networks." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.

[4] Sun, Fan-Yun, et al. "Infograph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization." arXiv preprint arXiv:1908.07000 (2019).

[5] Xu, Minghao, et al. "Self-supervised Graph-level Representation Learning with Local and Global Structure." arXiv preprint arXiv:2106.04113 (2021).

[6] You, Yuning, et al. "Graph contrastive learning with augmentations." Advances in Neural Information Processing Systems 33 (2020): 5812-5823.

[7] You, Yuning, et al. "Graph Contrastive Learning Automated." arXiv preprint arXiv:2106.07594 (2021).

[8] Grover, Rong, Yu, et al. "Self-supervised graph transformer on large-scale molecular data." arXiv preprint arXiv:2007.02835 (2020).

[9] Liu, Shengchao, et al. "Pre-training Molecular Graph Representation with 3D Geometry." arXiv preprint arXiv:2110.07728 (2021).



3.4 Preliminaries

Notations:
e A: atom (node) attributes.
o [': bond (edge) attributes.

e R: atom (node) positions.

Molecule as 2D topological graph:
e x for a 2D molecular graph.

o hfor 2D representation, 1, = 2D-GNN(A, E).

Molecule as 3D geometric graph:
e y for a 3D molecular graph.

» h, for 3D representation, /1, = 3D-GNN(A, R).

e Conformers.

From [1] Axelrod, Simon, and Rafael Gomez-Bombarelli. "GEOM: Energy-annotated molecular conformations for property
prediction and molecular generation." arXiv preprint arXiv:2006.05537 (2020).
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Figure 1. Molecular representations of the latanoprost molecule. fop SMILES string. left Stereochemical formula with edge
features, including wedges for in- and out-of-plane bonds, and a double line for cis isomerism. right Overlay of conformers.
Higher transparency corresponds to lower statistical weight.
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3.4 Preliminaries

~ exp(—E(x))
A
and the bottleneck is the intractable partition function A = J exp(—E(x))dx.

X

Energy-Based Model (EBM): p(x) , where E(x) is the energy function,

Solutions:

e Noise-Contrastive Estimation (NCE) [1, 2]
e Contrastive Divergence

e Score Matching

[1] Liu, Shengchao, et al. "Pre-training Molecular Graph Representation with 3D Geometry." arXiv preprint arXiv:2110.07728 (2021).

[2] Gutmann, Michael, and Aapo Hyvéarinen. "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." Proceedings of the thirteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2010.
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3.5 Method: GraphMVP

3.5.1 Ml and SSL

3.5.2 Contrastive SSL
3.5.3 Generative SSL
3.5.4 Multi-task Objective

17



3.5.1 Ml and SSL

Mutual information (Ml):

e measures the non-linear dependence between variables.
e the larger MI, the stronger dependence between variables.

H(X,Y)

’

H(X) H(Y)

Maximizing M| between 2D and 3D views.

e EXpect: obtain a more robust 2D representation by sharing more information with
its 3D counterparts.

13



3.5.1 Ml and SSL

px,y) ]
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How to estimate this lower bound?

—p(x,y) llog p()’ ‘X)] -
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3.5.1 Ml and SSL
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How to estimate this lower bound?

GraphMVP proposes 1 contrastive and 1 generative SSL to estimate it, mainly on modeling the
conditional log-likelihood term.




3.5.2 Contrastive SSL

Lower bound on MI:

1
I[(X;Y) > > = oepllog p(x|y) +log p(y | x)].

If we model the conditional log-likelihood term with energy-based model (EBM):

1 ]gc(xa y) n fy(y’ X)

< = ——E [lo
EBM I p(x,y) & Axb, Ay|x

log




3.5.2 Contrastive SSL

Lower bound on MI:

1
I[(X;Y) > > = oepllog p(x|y) +log p(y | x)].

If we model the conditional log-likelihood term with energy-based model (EBM):

1 ]gc(xa y) fy(y’ X)

A = — —F [lo + lo
EBM I p(x,y) g Axb; g A

ylx

Then with NCE, we have the final objective as EBM-NCE:

|
ZEBM-NCE = _E ~Paara(Y) [ _pn(XIy)[log(l —o(f(x,¥))] + _Pdam(x|Y)[10g o( f,(x, y))]]
|
_5 _pdata(x) [ _pn(y|x)[10g(1 — U(fy(ya X)))] + _pdata(ylx)[l()g U(fy(y, x))]] ,

where p,,,, is the data distribution, p, is the noise distribution, f.(x,y) = f(y,x) = {(h,, h,).
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3.5.2 Contrastive SSL

Lower bound on MI:

1
I[(X;Y) > > = oiepllog p(x | y)|+ log p(y | x)]l.

If we model the conditional Iog-likelihoo&cerm with energy-based model (EBM):

1 fx(xa y) f;’(y’ X)

A = — —F [10 +|lo
EBM I p(x,y) g Ax|y g A

y|x

Then with NCE, we have the final objective as EBM-NCE:

1

2 EBM-NCE = 5 _pdam(y)[ = ely10g(l = o (£ YINIHE, | (yllog o(fi(x, }’))]]

|
) ‘pdamm[ = oiollogd = o(f,(n NI+ B, o1nllog o(f,(y, x))]],

where p,,,, is the data distribution, p, is the noise distribution, f.(x,y) = f(y,x) = {(h,, h,).



3.5.2 Contrastive SSL

EBM-NCE & Jensen-Shannon Estimation (JSE)
The formulations are similar, while there are 3 main differences:
e Derivation and intuition:
e JSE: f-divergence, variational estimation, Fenchel duality.
e EBM-NCE: Ml lower bound, EBM, NCE.
 Noise distribution:
e JSE: MINE [1], empirical distribution for noise distribution.
e EBM-NCE: recent work [2] extends it with adaptively learnable noise distribution.
o Flexiblility:
* EBM: score matching, contrastive divergence, etc.

[1] Belghazi, Mohamed Ishmael, et al. "Mine: mutual information neural estimation." arXiv preprint arXiv:1801.04062 (2018).
[2] Arbel, Michael, Liang Zhou, and Arthur Gretton. "Generalized energy based models." arXiv preprint arXiv:2003.05033 (2020).
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3.5.2 Contrastive SSL

EBM-NCE & InfoNCE

Both EBM-NCE and InfoNCE are aligning the positive pairs and contrasting the
negative pairs.
Take either one of them for contrastive SSL, i.e.,

Z¢c = ZLInfoNCE ©f £ = ZEBM-NCE-

-
N
/
\
I
Q
e
[T R
jo
N
>
_
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3.5.3 Generative SSL

Lower bound on Ml:

1

I[(X;Y) > > =10 p(x | y) + log p(y | x)].

Variational Molecule Reconstruction
We introduce a variational distribution z, = y_+ 2. © €:

log p(y|x) =1og E,. \[p(y|x,2)] = E (. 1»|log p(y | x, 2)| — KL(q(z,|%) | | p(z,)).




3.5.3 Generative SSL

Lower bound on Ml:

I
IX;Y) > —
(X ¥) 22

= anllogp(x|y) +log p(y [ x)].

Variational Molecule Reconstruction

We introduce a variational distribution z, = y_+ 2. © €:

From [1] Axelrod, Simon, and Rafael Gomez-Bombarelli. "GEOM: Energy-
annotated molecular conformations for property prediction and molecular
generation." arXiv preprint arXiv:2006.05537 (2020).

log p(y|x) =1og E,. \[p(y|x,2)] = E (. 1»|log p(y | x, 2)| — KL(q(z,|%) | | p(z,)).

Benefits:

e Stochastic mapping between 2D and 3D views.

* An explicit representation for transferring to downstream tasks.




3.5.3 Generative SSL

Lower bound on Ml:

1

I[(X;Y) > > =10 p(x | y) + log p(y | x)].

Variational Molecule Reconstruction
We introduce a variational distribution z, = y_+ 2. © €:

log p(y|x) =1og E,. \[p(y|x,2)] = |E.( 1»|log P | X, 20| [— KL(q(z, | %) | | p(z,)).
Reconstruction

Limitation:

 Reconstruction of structured data. If the target data space is discrete/structured, then
the modeling and evaluation on this data space is hard.

28



3.5.3 Generative SSL

Lower bound on Ml:

1

I[(X;Y) > > =10 p(x | y) + log p(y | x)].

Variational Molecule Reconstruction
We introduce a variational distribution z, = y_+ 2. © €:

log p(y|x) =1og E,. \[p(y|x,2)] = |E.( 1»|log P | X, 20| [— KL(q(z, | %) | | p(z,)).

Reconstruction

Solution:
Variational Representation Reconstruction (VRR)
Let’s transfer the reconstruction from data space to representation space.

29



3.5.3 Generative SSL

Variational Molecule Reconstruction
logp(y[x) =logk, \[p(y]x,z)] 2

T KL(Q(ZX ‘ )C) ‘ ‘p(zx))
Reconstruction

Variational Representation Reconstruction
Let’s transfer the reconstruction from data space to representation space.

If is y is continuous, we can use Gaussian for the likelihood: ||y — g.(z,)||*, where g.(z,) is the
decoder.

If is y is discrete and structured, then we propose this surrogate loss: ||/,(y) — hy(gx(zx))Hz, where

h,, is the encoder on y.

By approximation: [|A,(y) — g (z)||*
Add stop-gradient: ||SG(h,(y)) — q.(z))|I*

30



3.5.3 Generative SSL

Final solution (VRR):
|
S = LR = 5 | Egepolllac) - S6)IF] + . [llg,c,) - SGGI|

2
p
+7 KL(q(z,|0) | | p(z,) + KL(q(z,|¥) [ | p(z))] -
. e i:? -
C —'c‘/"N‘C\N":"‘_ ) mlhle:lw)resentdb T g .
Cx Bx_ - .
‘/ y
Zy “——/

Note: this surrogate loss is exact if 1,/h, is continuous invertible.

But empirically, we find GNN is good enough.
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3.5.4 Multi-task Objective

The objective is weighted sum of the contrastive and generative SSL.
ZGraphMvP = a1 - L+ - ZG.

) En O
by I
_ s
zJ\m |
A 20
~ 7 J\;:) J y
x

Contrastive and generative SSL are complementary.
* From representation learning:

e Contrastive SSL is inter-data.

e Generative SSL is intra-data.
* From distribution learning:

e Contrastive SSL is learning distribution in a local way: by contrasting negative pairs.
e Generative SSL is learning distribution in a global way: learning the data density function directly.
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3.6 Experiments

Datasets: Table 8: Summary for the molecule chemical datasets.
* Pre-training
. Dataset  Task # Tasks  # Molecules  # Proteins  # Molecule-Protein
e GEOM [1], 50k molecules, each with 5 conformers. CEBP  Classification 1 2039
Tox21 Classification 12 7,831
* Downstream ToxCast  Classification 617 8,576
T . Sider Classification 27 1,427
* Molecular Property Prediction: ClinTox  Classification 2 1,478
. . : : MUV Classification 17 93,087
* Physiology: Tox21, ToxCast, ClinTox, BBBP, Sider. HIV Classifioation | 41127
: . . TIPN Bac Classificati 1 1,513
 Physical chemistry: ESOL, Lipophilicity, CEP. ace anscation
_ . . . Delaney  Regression 1 1,128
e Biophysics: MUV, BACE, Hiv, Malaria. Lipo Regression 1 4,200
. Malaria  Regression 1 9,999
* Drug-Target Interaction: CEP Regression 1 29,978
. Davis Regression 1 638 379 30,056
* Davis, KIBA. KIBA  Regression 1 2,068 229 118,254

Backbone models:
e GIN [2] for 2D GNN.
e SchNet [3] for 3D GNN.

[1] Axelrod, Simon, and Rafael Gomez-Bombarelli. "GEOM: Energy-annotated molecular conformations for property prediction and molecular generation." arXiv preprint arXiv:2006.05531 (2020).
[2] Xu, Keyulu, et al. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018).
[3] Schutt, Kristof T., et al. "Schnet—a deep learning architecture for molecules and materials." The Journal of Chemical Physics 148.24 (2018): 241722.
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3.6 Experiments

Table 1: Results for molecular property prediction tasks. For each downstream task, we report the
mean (and standard deviation) ROC-AUC of 3 seeds with scaffold splitting. For GraphM VP, we set

M = 0.15 and C' = 5. The best and second best results are marked bold and bold, respectively.

Table 5: Results for four molecular property prediction tasks (regression) and two DTA tasks
(regression). We report the mean RMSE of 3 seeds with scaffold splitting for molecular property

downstream tasks, and mean MSE for 3 seeds with random splitting on DTA tasks. For GraphMVP,

Pre-training BBBP  Tox21 ToxCast Sider ClinTox MUV HIv Bace  Ave we set M = 0.15 and C' = 5. The best performance for each task is marked in bold. We omit the std
- 65.4(2.4) 74.9(0.8) 61.6(1.2) 58.0(2.4) 58.8(5.5) 71.0(2.5) 75.3(0.5) 72.6(4.9) 67.21 here since they are very small and indistinguishable. For complete results, please check Appendix G.4.
EdgePred 64.5(3.1) 74.5(0.4) 60.8(0.5) 56.7(0.1) 55.8(6.2) 73.3(1.6) 75.1(0.8) 64.6(4.7) 65.64 — .
AttMask 70.220.5; 74.2%0.8; 62.520.4% 60.420.6; 68.629.6; 73.921.3; 74.3§1.3; 77.2%1.4; 70.16 Molecular Property Prediction Drug-Target Affinity
GPT-GNN 64.5(1.1) 75.3(0.5) 62.2(0.1) 57.5(4.2) 57.8(3.1) 76.1(2.3) 75.1(0.2) 77.6(0.5) 68.27 Pre-training ESOL Lipo Malaria CEP Avg Davis KIBA Avg
InfoGraph  69.2(0.8) 73.0(0.7) 62.0(0.3) 59.2(0.2) 75.1(5.0) 74.0(1.5) 74.5(1.8) 73.9(2.5) 70.10

ContextPred  71.2(0.9) 73.3(0.5) 62.8(0.3) 59.3(1.4) 73.7(4.0) 72.5(2.2) 75.8(1.1) 78.6(1.4) 70.89 — 1.178 0744 1.127 1254 1.0756 0.286 0.206  0.2459
GraphLoG  67.8(1.7) 73.0(0.3) 62.2(0.4) 57.4(2.3) 62.0(1.8) 73.1(1.7) 73.4(0.6) 78.8(0.7) 68.47 AM 11120730 1119 1256 10542 0291 0203 02476
G-Contextual 70.3(1.6) 75.2(0.3) 62.6(0.3) 58.4(0.6) 59.9(8.2) 72.3(0.9) 75.9(0.9) 79.2(0.3) 69.21 los 1106 0702 1101 1943 10606 0279 0198 09382
G-Motif 66.4(3.4) 73.2(0.8) 62.6(0.5) 60.6(1.1) 77.8(2.0) 73.3(2.0) 73.8(1.4) 73.4(4.0) 70.14 : - : : : : : -
GraphCL  67.5(3.3) 75.0(0.3) 62.8(0.2) 60.1(1.3) 78.9(4.2) 77.1(1.0) 75.0(0.4) 68.7(7.8) 70.64 JOAO 1.120 0708  1.145 1293 1.0663 0.281 0.196 0.2387
JOAO 66.0(0.6) 74.4(0.7) 62.7(0.6) 60.7(1.0) 66.3(3.9) 77.0(2.2) 76.6(0.5) 72.9(2.0) 69.57 GraphMVP 1091 0718 1114 1236 10397 0280 0178 02286
GraphMVP  68.5(0.2) 74.5(0.4) 62.7(0.1) 62.3(1.6) 79.0(2.5) 75.0(1.4) 74.8(1.4) 76.8(1.1) 71.69 GraphMVP-G  1.064 0.691 1.106 1.228 1.0221 0.274 0.175 0.2248
GraphMVP-G 70.8(0.5) 75.9(0.5) 63.1(0.2) 60.2(1.1) 79.1(2.8) 77.7(0.6) 76.0(0.1) 79.3(1.5) 72.76 GraphMVP-C  1.029 0.681 1.097 1244 1.0128 0276 0.168 0.2223
GraphMVP-C 72.4(1.6) 74.4(0.2) 63.1(0.4) 63.9(1.2) 77.5(4.2) 75.0(1.0) 77.0(1.2) 81.2(0.9) 73.07

34



4. MTL for Molecular Property Prediction

4.1 Problem Definition

4.2 Related Work

4.3 Preliminaries

4.4 Dataset with Explicit Task Relation

4.5 Method: SGNN-EBM
4.6 Experiments

Al for Science: Mind the Gaps, NeurlPS 2021 Workshop; In Submission to AISTATS'22
Shengchao Liu, Meng Qu, Zuobai Zhang, Huiyu Cali, Jian Tang
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4.1 Problem Definition

Molecule -> Shared Representation -> Property Prediction on Multiple Tasks

ml H VO\\ _ / - [
T 7
0O
:<\~/ % DF Task 1 Task 2 Task 3
H h GNN Predlct m2 missing
V. l al m,
_ g 1,8 18
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4.1 Problem Definition

Molecule -> Shared Representation -> Property Prediction on Multiple Tasks

* Useful tool for low-data & missing labels.

 The domain knowledge is rich, can we take better advantage of them?
 What format of domain knowledge we can utilize?

* With the specific format of domain knowledge, how to incorporate them for
problem solving?

37



4.1 Problem Definition

Q: What format of domain knowledge we can utilize?

ml H o,_‘__.\ - ,o—H ‘Q
~q oF
:{\N/ & Task 1 Task 2 Task 3
h []
m, J\ l > m,
reaic
© e B orreaicc g,

/ l T m,
— 8 h8 h8
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4.1 Problem Definition

Q: What format of domain knowledge we can utilize?
A:. We can extract task relation graph from domain.

Task Relation Graph

Task 1 Task 2 Task 3 Task 1

0= | . _ :
m, TN\ » I l ¥ mp | __missing R, >
_A GNN l B Predict m, B | | | |
Task 2 Task 3
— 8 h8 L8




4.1 Problem Definition

Q: What format of domain knowledge we can utilize?
A:. We can extract task relation graph from domain.

Task Relation Graph
Task 1 Task 2 Task 3 Task 1

~n" P
2 TN P - » my 44— -~
] GNN Predict
l B Predic m,
m, , ,
- / W8 K8 ; Task 2 Task 3
My = 17

Q: With the specific format of domain knowledge, how to incorporate them for
problem solving?

A:. We solve this from two directions in modeling the task relation graph:
* Direction 1: modeling in the latent space.
* Direction 2: modeling in the output space.
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4.3 Preliminaries

« molecule: x = (V, E), Vis the node attributes, E is the edge attributes.

o T'tasks with C-class labels: y = {yy, V{5 .- - Y71}, Where we focus on C = 2.

e Graph Neural Network (GNN): GCN[1], GIN|[2].

e Energy-Based Model (EBM):
eXp(—E¢(x, y))

Py | X) = A

[1] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
[2] Xu, Keyulu, et al. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018).
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4.4 Dataset with Explicit Task Relation

456k molecules and 1k tasks from ChEMBL: https://www.ebi.ac.uk/chembl/

Task (protein) reference to STRING: https.//string-db.org/

ChEMBL (Molecule-Task)

a )

Task 1
Protein A, Protein B, Protein C

Task 2
Protein D, Protein E

Task 3
Protein A, Protein F

\_ W

STRING (Protein-Protein Interaction)

~

Protein A, Protein F, score
Protein B, Protein D, score

Protein G, Protein K, score

\_

~

J

Task 1

Task Relation Graph

—/\

Task 2

Task 3

Table 1: Statistics about 3 benchmark datasets with
explicit task relation, filtered by 3 thresholds. Thresh-
old means the number of non-missing labels for each
molecule /task.

Threshold # Molecules # Tasks Sparsity

10 13,004 382 5.76%
50 932 152 66.70%
100 518 132 92.87%
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4.5 Method: SGNN-EBM

4.5.1 Input Embedding
4.5.2 Structured Latent Space Modeling: State Graph Neural Network (SGNN)

4.5.3 Structured Output Space Modeling: Energy-Based Model (EBM)
4.5.4 SGNN-EBM
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4.5.1 Input Embedding

Molecule Embedding:
z(x) = GIN(V, E), where z(x) € R%

Task Embedding:
(20> 245 - - - » 271 ] = GCN(task relation graph),

dl‘

where z; € |

Input Embedding Latent Space

~

A % GIN
oo

l\‘ MLP, | | MLP,
0. 0
]

Molecular Graph

e GCN
o
(5

Task Relation Graph J
\C N

N\

Z(x)

Z(x) Z; Zj

Concat these two embeddings as inputs into state GNN (SGNN):
hi(())(x) — MLP,(@O)(Z(X) D Z(l))

hl§.O>(x) = MLP{(z(x) & 7 & 7)),

where MLP(") : |

d, +d

— |

Cxd MLPY) : |

d, +2d, — |

Cx(Cxd
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4.5.2 Structured Latent Space Modeling: SGNN

Input Embedding Latent Space

State Graph Neural Network (SGNN) g w | [ k

o [% - ) “ z,.'
e State on the input layer: 4/ H r] Lo
hOx,y) = KOy o

GCN

h2 3 y) = By vl o’e

Tsk Relaton Grph p

* Message passing:
A D(x, y.) = MPNNC 1)(h(l)(x V), {h(l)(x Yo ¥) | V], Yj})

l

hl§l+1)(x9 Yis y]) — MPNNg_I_l) (hi(l)(xa yi)a hj(l)(xa y])a hl:(]-l)(xa Yis y])) .
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4.5.3 Structured Output Space Modeling: EBM

Energy-Based Model (EBM)

* Energy functlon

Eyx,y) = Zf(x D CROY

(I,))EG

e EBM likelihood
exp(z f(x,y;) + Z fl](x > y]))

Py | X) = A
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4.5.4 SGNN-EBM

* SGNN for modeling in the latent space.
« EBM for modeling in the output space.
* The final model is called SGNN-EBM.

Input Embedding Latent Space Output Space
a N\ N\
zZ(x)
N z(x) Z; Z; Energy-Based Models:
o / \ | aBn NCE and Gibbs Sampling
\, )\ GIN
! S fe, )
E ,
MLP,, MLP, »(X,¥) 506,707
0., ,© O
Molecular Graph l !
<
GCN
Task Relation Graph
Qs elation Grap ) _




4.5.4 SGNN-EBM

e |Learning with EBM-NCE:

gNCE — _yfvpn

log

1

1 + exp(—E4(x, y))

e Inference with Gibbs sampling:

p¢(yi‘y—i9x) —

_y ~Pdata

log

CXP (fi(xa yl) T Z(i,j}e? fzj(xa Yis y]))

C—-1
Yi—

1

1 + exp(Ey(x, y)) |

0 X6 ) + X, o fif: 3 ) |



4.6 Experiments

Empirical results on one dataset with three thresholds.

Table 1: Statistics about 3 benchmark datasets with
explicit task relation, filtered by 3 thresholds. Thresh-
old means the number of non-missing labels for each

molecule /task.
Threshold # Molecules # Tasks Sparsity
10 13,004 382 5.76%
50 932 152 66.70%
100 518 132 92.87%

Table 2: Main MTL results. All datasets are split into 8-1-1 for train, valid, and test respectively. For each
method, we run 5 seeds and report the mean and standard deviation.

The best performance is highlighted.

Method

Pn

ChEMBL 10

ChEMBL 50

ChEMBL 100

STL

MTL

UW
GradNorm
DWA
LBTW

71.67 = 0.64
74.83 = 0.61
72.49 £+ 0.53
75.17 = 0.77
72.45 = 1.31
75.21 + 0.49

73.57 = 1.20
79.37 £ 1.76
79.68 £ 0.98
79.46 £+ 1.27
79.35 £ 0.68
79.52 + 0.56

70.81 = 1.28
77.78 = 1.59
78.71 = 1.93
78.75 = 1.60
78.21 = 2.31
79.07 = 0.99

SGNN
SGNN-EBM
SGNN-EBM

SGNN (Fixed)
SGNN (Adaptive)

77.72 = 0.66
78.04 £ 0.73
78.10 £+ 0.71

79.69 + 1.07
80.34 4+ 1.08

80.78 + 0.85

80.19 = 2.01
80.48 £+ 1.93

81.13 + 2.04
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5. Conclusions & Future Directions

e About SSL on graph:

e We show that 3D information can help 2D representation. Can we show that 2D
information can help 3D representation? E.g., take downstream with 3D only.

e EBM-NCE connects EBM and SSL, can we try other solutions to EBM?

e Generative SSL (Variational Representation Reconstruction, VRR) contains the
non-contrastive SSL (e.g., BYOL, SimSiam).

e Q:If BYOL/SimSiam can provide a robust representation, does this mean
other generative SSL can also reach comparative performance?
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5. Conclusions & Future Directions

e About SSL on graph:

e We show that 3D information can help 2D representation. Can we show that 2D
information can help 3D representation? E.g., take downstream with 3D only.

e EBM-NCE connects EBM and SSL, can we try other solutions to EBM?

e Generative SSL (Variational Representation Reconstruction, VRR) contains the
non-contrastive SSL (e.g., BYOL, SimSiam).

e Q:If BYOL/SimSiam can provide a robust representation, does this mean
other generative SSL can also reach comparative performance?

e A: Yes! This work [1] provides the empirical evidence.

[1] He, Kaiming, et al. "Masked autoencoders are scalable vision learners." arXiv preprint arXiv:2111.06377 (2021).
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5. Conclusions & Future Directions

e About MTL on graph:
e Can we extend this to different scientific applications??
e Can we learn such task relation graph??

 The extracted task relation is noisy. Can we use the learned task relation to
help rectify it?
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5. Conclusions & Future Directions

e About MTL on graph:
e Can we extend this to different scientific applications??
e Can we learn such task relation graph??

 The extracted task relation is noisy. Can we use the learned task relation to
help rectify it?

* More generally:

e Combining SSL and MTL. Now we explore two directions separately. In the
future, we can combine these two directions into a unified pipeline.

 What other formats of domain knowledge can we utilize? And how to
incorporate them appropriately with the Al methods?
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