Practical Model Selection for Virtual Chemical Screening

Shengchao Liu^{1,7}, Moayad Alnammi^{1,7}, Spencer Ericksen^{2,3,8}, Andrew Voter⁴, James Keck⁴, Michael Hoffmann^{2,5}, Scott Wildman², Anthony Gitter^{1,3,6,7,8}

¹Department of Computer Sciences; ²Small Molecule Screening Facility; ³Center for Predictive Computational Phenotyping; ⁴Department of Biomolecular Chemistry; ⁵McArdle Laboratory for Cancer Research; ⁶Department of Biostatistics and Medical Informatics; University of Wisconsin-Madison, Madison, WI ⁷Morgridge Institute for Research, Madison, WI

Introduction & Motivation

- **Problem:** Given a chemical compound and target protein, determine whether the compound binds with the target.
- •Experimental tests in a small molecule screening facility are expensive.

Virtual Screening (VS) can help accelerate drug discovery by proposing the most probable compounds for experimental testing.

Two Main VS Strategies

- 1. Structure-Based: docking methods that requires target structure info.
- 2. Ligand-Based: similar compounds bind similarly. No structure knowledge of target required.

Case Study: SSB-PriA

- Keck lab screened 75000 compounds to see which disrupt the SSB-PriA interaction. (known)
- Untested library of 25000 new compounds. (unknown)

Goal: Assess **quality of MTNN and other common methods** on this unknown set. We are only given one chance. Also gives us a chance to assess **quality of evaluation metrics** as they translate to real world value.

Real-World Impact: Help screening facilities by proposing top 250 most likely compounds. Perfect ranking not important.

Single Task vs. Multi-Task Neural Networks

Project Pipeline

- Stage 1: Hyperparameter Selection Stage, prune hyperparameter space
- Stage 2: Cross Validation Stage, select best model based on early enrichment
- Stage 3: Prospective Screening Stage, evaluate best models with new experiments

Cross Validation

Evaluation metrics on Pria-SSB AS for all models.

Prospective Screening

Hits in Top 250 Predictions

Number of active compounds in top 250 predictions from seven selected models and a chemical similarity baseline compared to the number of experimentally-identified actives.

·		-	•	
Model	Actives	Actives not in baseline	SIM clusters	MCS clusters
Experimental	62		32	37
Similarity Baseline	31		14	8
Consensus Docking	0	0	0	0
STNN-C	23	4	12	7
STNN-R	29	13	16	11
MTNN-C	30	6	15	9
LSTM	1	1	1	1
Random Forest	40	10	16	9
IRV	29	5	13	7

An UpSet plot showing the overlap between the selected models and the chemical similarity baseline on PriA-SSB prospective. The plot generalizes a Venn diagram by indicating the overlapping sets with dots on the bottom and the size of the overlaps with the bar graph.

High-throughput Computing

Future Work

- Test ensembles that combine classification and regression models
- Scale to more diverse chemical libraries with millions of untested chemicals
- Assess alternative chemical feature representations

References

- 1. Scigenis. "Schematic illustration of docking a small molecule ligand (green) to a protein target (black) forming a protein-ligand complex." en.wikipedia.org/wiki/Docking (molecular)
- 2. S. Lusher and G. Schaftenaar. "2-D searching Tutorial" http://www.cmbi.ru.nl/edu/bioinf4/2D-Prac/2d.shtml
- 3. GitHub repository https://github.com/gitter-lab/pria_lifechem