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In a drug discovery pipeline, once a disease-relevant protein target has been identified, researchers
face the daunting task of identifying chemical compounds that effectively modulate that target.
Experimental phenotypic screening of thousands or millions of small molecules is time-consuming and
expensive, whereas virtual (computational) screening can provide a small set of promising molecules
that are more likely to be active towards the target protein. It acts as a pre-processing step for
filtering the extremely large number of candidate chemicals. Among virtual screening methods, deep
learning has become popular recently. It can benefit from fully exploring complex, non-linear
relationships among chemicals’ features. Our goal is to critically evaluate deep learning versus
established virtual screening methods to see if the hype translates to real-world utility in this domain.
We focus on the SSB-PriA target, a protein-protein interaction, and analyze four classes of virtual
screening methods: influence relevance voter, structure-based docking, single-task learning, and
multi-task learning. We compare these methods in a real-world setting by assessing their ability to
prioritize active compounds in an untested set. We also argue that the most popular evaluation
metric in this domain, area under the ROC curve, can be misleading and compare it with other
evaluation metrics, showing which provide real-world value. Moreover, we present a user-friendly
framework for virtual screening tasks based on Keras, a neural network library built on top of Theano
and Tensorflow.
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