Scrutinizing Deep Learning: A Virtual Screening Case Study Shengchao Liu¹, Moayad Alnammi¹, Scott Wildman², Spencer Ericksen^{2,3}, Haozhen Wu^{2,4}, Andrew Voter⁵, James Keck⁵, Michael Hoffmann^{2,6}, Anthony Gitter^{1,3,7,8} ¹Department of Computer Sciences; ²Small Molecule Screening Facility; ³Center for Predictive Computational Phenotyping; ⁴Department of Statistics; ⁵Department of Biomolecular Chemistry; ⁶McArdle Laboratory for Cancer Research; ⁷Department of Biostatistics and Medical Informatics; University of Wisconsin-Madison, Madison, WI #### Introduction & Motivation - **Problem:** Given a compound and target protein, determine whether the compound binds with the target. (Drug Discovery) - Only way to be sure is physical tests (in vitro) in a molecule facility. Expensive and timely. Virtual Screening can help accelerate drug discovery by proposing most probable compounds for testing. (in silico) ### Two main VS methods - 1. Structure-Based: docking methods that requires target structure info. - 2. Ligand-Based: similar compounds bind similarly. No structure knowledge of target required. ⁸Morgridge Institute for Research, Madison, WI SB Docking Concept. Figure from [1] LB Fingerprint Concept. Figure from [2] ### Case Study: SSB-PriA - Keck lab has given 75k ligand-protein interaction data for 3 targets. (known) - Later another 25k ligand interaction for these 3 targets. (unknown) **Goal:** Assess **quality of MTNN and other common methods** on this unknown set. We are only given one chance. Also gives us a chance to assess **quality of metrics** as it translates to real world value. **Real-World Impact**: Help molecule facilities by proposing top 1000 most likely compounds. Perfect ranking not important. ## Supervised Learning Setup Fingerprint Concept. Figure from [2] Goal: Given a new molecule, use trained model to predict its activity. ### Single Task NN vs Multi-Task NN | Issue | Multiple STNN | Single MTNN | |--------------------|--|-------------------------------------| | Imbalanced classes | Easy weight adjustment | - Careful weight adjustment | | | | - Target error can dominate others | | Merging Datasets | No need | Missing labels | | Stratified | Easy 1-column split | - Complicated multi-col | | train/val/test | | - Greedy col-by-col splits | | Shared Weights | None | - Captures semantic structural info | | | | - local minima/regularizers | | NN Hyperparameters | - Activation functions: relu, elu , etc. | | | | - Optimizer: adam , sgd, etc. | | | | - Dropout, BatchNorms, weight initializers, architetcture. | | | Evaluation Metrics | - ROC, PR, EF, BEDROC Translation to real-world value for molecule facilities. | | | | | | ### Project Pipeline ## Preliminary Results Sample MTNN evaluation results using different metrics. How do we relate these metrics to actual value? Preliminary results among four different classes of models: STNN, MTNN, Random Forest, and LightChem. The results are on four metrics on the test set. #### References - 1. Scigenis. "Schematic illustration of docking a small molecule ligand (green) to a protein target (black) forming a protein-ligand complex." en.wikipedia.org/wiki/Docking (molecular) - 2. S. Lusher and G. Schaftenaar. "2-D searching Tutorial" http://www.cmbi.ru.nl/edu/bioinf4/2D-Prac/2d.shtml