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1 INTRODUCTION

Multi-task learning aims to exploit useful information in related learning tasks to improve the gener-
alization performance of all the tasks jointly. Deep multi-task learning has been successfully applied
under various scenarios such as virtual chemical screening Ma et al. (2015); Ramsundar et al. (2015),
image detection Lu et al. (2016); Misra et al. (2016), genomics Kelley et al. (2016); Zhou & Troy-
anskaya (2015), and health prediction Jaques et al. (2016). The benefits of multi-task learning come
from transferring knowledge among related tasks, which can reduce overfitting, especially when the
data for some tasks is limited Liu et al. (2015); Ruder (2017a). But the underlying assumption that
all tasks are related is not always true.

Although the performance may improve on average over all tasks in a multi-task model, for some
specific tasks, the multi-task performance can be worse than a single-task model. We refer to this de-
crease in performance in the multi-task setting as negative transfer, and the problem occurs naturally
in real datasets. Despite abundant approaches for multi-task learning, few methods explicitly aim to
boost multi-task performance while minimizing negative transfer on specific tasks. Previously, shal-
low models Kang et al. (2011); Kumar & Daumé (2012) applied sparsity and clustering constraints
to guide the training strategy for dissimilar tasks, but how deep neural networks can adopt such ideas
is not well studied.

Our work first proposes to solve negative transfer issue by applying reinforcement learning to control
the training process. We will start by focussing on one task, and argue that policy can help guide
the deep network to select only the important information transferred from other tasks. We come up
with this deep multi-task reinforcement learning (DMTRL) framework, and try to generalize it to
different domains.

2 RELATED WORK

Self-Paced Curriculum Learning Self-paced curriculum learning borrows idea from education: it
is reasonable for people to take curriculum from easy ones to complex ones. Curriculum learning
suggests using easy samples to train the model first, then continue by adding more complicated
samples. The easiness is hard to determine, and Kumar et al. (2010) introduces self-paced learning,
where the easiness is identified by the learned model.

Then following works extend this from single-task model to multi-task case. Li et al. (2017) intro-
duces a joint objective function by adding weights and regularizers on each task. And Murugesan
& Carbonell (2017) uses a threshold on residual of each task to guide which group of tasks are easy,
therefore for gradient updates. Above methods need the assumption that all tasks are related, and
Pentina et al. (2015) handles dissimilar tasks by applying multiple task learning sequences.

Clustering-based Multi-task Learning Many works have been proposed in literature that using
clustered tasks, grouping tasks using different notion of grouping. Some methods assume that pa-
rameters of tasks that can be grouped in the same cluster are either close to each other in some
distance metric or share a common probabilistic prior, tasks assigned in different clusters didn’t in-
teract with each other Jacob et al. (2009); Chen et al. (2011). Similar to method proposed in this
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paper, many methods are trying to find probabilistic model that attempt to extract covariance matrix
among each task pairs and use it in training predictorsZhang & Schneider (2010); Guo et al. (2011).

Another assumption is clustering-based method is that task parameters lie in a low dimensional
subspace, which captures model structure shared among all tasks. Some methods assume that some
features (with all raw and transformed features contained) are inactive for all tasks. And thus all
tasks parameters are pushed to a low dimensional subspaceArgyriou et al. (2008). Other method
follows the low dimensional subspace assumption but allows the tasks in different task groups to
overlap with each other in one or more bases Kumar & Daumé (2012).

Deep Multi-task Learning Recently, more works have been using deep neural network. It benefits
from taking the raw data as input, extracting the latent feature, so as to make better predictions.

However, only a few works Ruder (2017b) have been focusing on a better generalized deep multi-
task framework. Ensemble is one traditionally adopted option, and Lee et al. (2015) introduces a
similar idea called TreeNets, an ensembled deep neural network. In TreeNets, first part of layers
are shared among tasks, and following layers are trained independently. Lu et al. (2016) proposes
a framework that is able to dynamically construct a hierarchical network structure and selectively
share information among closely-related tasks. Both methods require large amount of computation
memory, especially when the hidden space is in high dimension.

Meta Learning and Reinforcement Learning Meta learning on deep network is a new coming
area. Meta learning, or learning to learn, aims at making model being able to learn the learning
process, so it can generalize well on new tasks or new samples. When it comes to deep network
framework, there are many interesting and potentially constructive points, like optimal learning
rates, batch size, predicting loss and gradients. There have been some recent works on such ideas,
Andrychowicz et al. (2016) uses a meta learner to learn the gradient, Ravi & Larochelle (2016)
predicts the next step hidden layer parameter with recurrent neural network.

Reinforcement learning provides another option for meta learning. The intuition behind reinforce-
ment learning is once a model or agent observed the environment, with the feedback, it can update
its policy space to make decision towards higher expected rewards. So a policy agent can fit well as
meta learner, considering that agent can Finn et al. (2017) applies meta learning to find a better base
model, so as being able to quickly transfer to new unseen but related tasks under some task distri-
bution, where only a few data points are available. This setting is also called the few-shot learning,
where data insufficient is very common on new tasks, and models are supposed to converge well
within a few epochs on a limited number of data. Distral Teh et al. (2017) proposes a framework
for simultaneously training multiple reinforcement tasks by learning a distilled policy, but is not for
solving the multi-task classification problems.

Virtual Screening Deep learning methods showed overwhelming results starting from Merck
(2012); Dahl (2012) Merck Molecular Activity Challange, 2012. The goal is to get a discriminator
being able to tell if a given small molecule has active interactions against the target protein. And
recent works Mayr et al. (2016); Dahl et al. (2014); Ma et al. (2015); Unterthiner et al. (2014); Ram-
sundar et al. (2015); Kearnes et al. (2016) have been investigated multi-task deep neural network
and proved its outstanding performance compared with classical machine learning methods.

Fingerprint encodes each molecule structure into 1024 binary bits, each bit represents one substruc-
ture. Besides, SMILES can be used to represent the atom sequential orders, and therefore feed in as
the model input. Jastrzębski et al. (2016) makes model comparison based on input features, includ-
ing Recurrent Neural Network Language Model and Convolutional Neural Networks with SMILES,
and shows that CNN is best when evaluated log-loss. Gomes et al. (2017) proposes Atomic Con-
volutional Networks (ACNN), which encodes the 3D neighborhood relation into 2D structure, so as
feed in to the CNN. Ramsundar et al. (2017) proposes progressive and bypass network models, with
soft parameter sharing to communicate shared knowledge among tasks. It also observes the negative
transfer issue, but lacks promising solutions.
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3 PROBLEM BACKGROUND

3.1 ANNOTATION

Suppose we have T tasks, corresponding to T datasets, and each dataset St = {Xt, Yt}, t ∈
{0, 1, . . . , T − 1}. All the instance-task labels can compose a complement matrix C ∈ Rn×T ,
where n is the number of union of instance set and T is the task number. This complement matrix
C fills in ’NaN’ for missing items when combined all {Y0, Y1, . . . , YT−1} indexed by instance. In
the context of stochastic gradient descent, one epoch, or one data pass, refers to using all samples
for gradient updates once. W is the complete weight parameter for neural network.

3.2 DEEP SINGLE-TASK AND MULTI-TASK LEARNING

Classical neural networks include single-task models and multi-task models with hard or soft pa-
rameter sharing (Figure 3). We emphasize the hard-sharing parameter model, which requires less
memory and exhibits negative transfer.

(a) Single-task (b) Multi-task Hard (c) Multi-task Soft

Figure 1: (a) contains one unit in the output layer representing a single task. (b) shares all parameters
among tasks except at the output layer, where multiple predictions are made. (c) is a soft-sharing
model. Each task has an identical layer structure with parameter similarity constraints.

The intuition behind MTL approaches is to transform knowledge among tasks, and improve perfor-
mance especially when they are highly correlated. Besides, when data is insufficient for some tasks,
learning can benefit from transferring representation from closely related ones. This situation can
be extended to few-shot learning.

4 METHODOLOGY

Here we propose an algorithm, deep multi-task reinforcement learning (DMTRL), to avoid negative
transfer on pre-defined focused task during the training process. Focused task is one for which we
prioritize performance while using the remaining tasks to constrain and guide the model training.
Because negative transfer can happen when tasks are not sufficiently related, we propose to consider
only one subgroup of similar tasks for each gradient update during neural network training, learning
which other tasks are most informative for the focused task. We use reinforcement learning to exe-
cute this strategy. Reinforcement learning has been used for fast convergence in few-shot learning
Finn et al. (2017) and learning gradients by meta learning Andrychowicz et al. (2016). Our DMTR-
L policy maps the multi-task network state to an action (π(·) : S → A, in which S,A are state,
action spaces). The policy is a binary bit vector representing one subgroup of tasks to be selected
when updating the gradient. By combining domain knowledge, like task similarities, into the reward
function, the DMTRL policy can help choose which subgroup to train on in iterations of each epoch.

The detailed DMTRL pipeline is illustrated in Figure 2a. At the beginning of each epoch, we sample
actions under some distribution and get rewards after trial epochs. The value-based reinforcement
learning assumes all actions are distributed uniformly and exhaustively enumerates them to select
the action with highest reward as the best policy. While the value-based method can find the best
policy, it is impractical in reality, because the time complexity is exponential in the number of tasks.
A solution to this is to apply a policy gradient method, which allows us to parameterize the multi-
task network by Θ and sample actions under the dynamically updated distribution. Policies are then
updated with stored action-reward pairs, and up-to-date actions will be generated to guide multi-task
training for each epoch.
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Figure 2: In figure 2a, at the start of epoch t, W = Wt is the multi-task network parameters. Before
the gradient update, there are several trial episodes. 1 update Ŵ by taking current state Wt and 2
the sampled policy π(·). 3 get the rewards and 4 use them as feedback to select the best policy
π(·). 5 use this optimal policy to update the gradient. For the policy-based method parameterized
by Θ, the extra step 2̃ maps from state Wt to an action. In step 4 π(·) will be updated once
receiving rewards. Following in figure 2b, we highlight the featurization part 1 . For each batch
with size of B, the input data xi ∈ Rd, where d is feature dimension. After some shared layers
among tasks, it will go to last layer withH hidden units. Final output is y = σ(Wh · [h0, . . . hH−1]),
where Wh ∈ RH×T , T is the task number. Here we can clearly observe that among different tasks,
all parameters are shared except the last layerWh, so we will use it as feature to feed in to our policy.

4.1 POLICY SETUP

In this section, we will elaborate how we set up policy, the key component in DMTRL. As illustrated
in Figure 2, the projection parameter from last layer will be used for featurization. Two options are
offered: the most brute-force way is to directly use parameter Wh as input feature for policy, but
this can bring some problems. (1) the memory and computation cost will grow linearly as task
number increases. (2) this cannot handle the temporal dependency issue. Suppose we have 2 tasks,
Wh ∈ RH×2. At epoch τ , only first task (W (0)

H ) gets updated, and the second task (W (1)
H ) remains

invariant. Then continue to epoch τ +1, we still have same input feature for second task (W (0)
H ), but

the corresponding reward and label can be different. Based on this, the ideal featurization should be
able to catch the temporal dependency. So we introduce using the gradient ∇Wh instead of Wh as
input feature, which can take over the temporal dependency issue better.

Next we will introduce both model-free and model-based policies, and the latter one contains two
variants: value-based and policy-based methods.

4.1.1 MODEL-FREE POLICY

Model-free applies heuristic strategies, and it gets rid of the policy trial and update stages in figure
2a. Recall that the goal is to avoid negative transfer, and to reach this, in each stochastic gradient
descent step, we hope the gradients can go to the optimal solution, and ignore the impact from
unrelated tasks. One natural solution is to use class weight to control this process, where we interpret
the class weight as the relevance from referenced task to focused one. To be more specific, the class
weight of some reference task will be set to 0 if it is not related to focused one, so more related task
will have higher class weight. We will include two types of featurization: the parameter of last layer
Wh and gradient of last layer∇Wh, and class weight is the cosine similarity based on that.

4.1.2 MODEL-BASED POLICY

Contrary to the model-free strategy, policy can be modularized. Here we will apply T independent
classification models corresponding to each row in Wh ∈ RH×T .
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Value-based model is to learn the policy by maximizing the expected state-function values. At time
step τ , we choose the best policy π and use this policy to update the multi-task network weights.

πτ+1(Wτ ) = arg max
a

Q(Wτ , a)

The Q(Wτ , a) is a value function which maps the state space and action space to the reward space;
and in this context, it is a mapping from deep network model W and class weight {0, 1}T to the
evaluation metric value on the focused task, like AUC[PR]. Sutton & Barto (1998) TD and MC are
two traditional methods to approximate Q-value. Details are described in appendix Algorithm 1.

If the action space is discrete, we can enumerate all possible policies. But if the action space is too
large, or it is continuous, Monte-Carlo is an alternative option.

The classical value-based methods, like Q-learning, SARSA, has one biggest drawback: given dis-
crete action space, the computation time will grow exponentially, as the number of tasks increases.
One solution is to use a parametric model, like neural network in deep Q-network (DQN) Mnih
et al. (2013) to approximate Q-value. To be more specific, we will use a meta-RL agent to param-
eterize the policy, πθ. The input is the model state (like hidden layer parameter), and output is the
probability of each task applied for update in current epoch.

Policy-based model is another option. Once we have a parametric model to approximate the Q-
value, instead of applying it in the bootstrap framework for policy selection, one natural thinking
would be directly output the policy. And update-to-date method is to use policy gradient to train πθ,
where the goal is to maximize the expectation Ea∼πθ [Q(W,a)]. Here is the gradient:

∇θEa∼πθ
[
Q(W,a)

]
= Ea∼πθ

[
Q(W,a)∇θ log πθ(a |W )

]
Applying this for gradient updates, and at each time step t, we draw next action according to this
newly updated distribution. Details are described in appendix Algorithm 2.

5 EXPERIMENTS AND RESULTS

We test our DMTRL algorithm on virtual chemical screening tasks, where the goal is to predict
the biochemical activity or other properties of a chemical compound. In this domain, the number
of labeled training examples is typically limited, making multi-task learning appealing. We are
conducting experiments on two virtual screening datasets (details in the supplement).

In the Kaggle Merck Challenge dataset Merck (2012), we predict real values for the provided
chemicals on 15 tasks. Each task represents the inhibition or binding of a specific protein target or
some other biochemical property.

In the PubChem BioAssay (PCBA) dataset Wang et al. (2012), each task is a binary classification
problem. We predict whether a given chemical is active for 128 target proteins. Previous studies of
these datasets used multi-task neural networks, and negative transfer was observed for some tasks
Ramsundar et al. (2015; 2017). This makes them appealing for our efforts to eliminate negative
transfer with DMTRL.

5.1 PCBA

We selected 3 pairs of tasks that can be highly related based on domain knowledge. For evaluation
metrics, AUC[ROC], AUC[BEDROC] and AUC[PR] are most widely used.

Results:

1. Focused > STL > MTL

2. For randomly sampled ones, N=50 > N=20 > N=10 > N=1 does not hold.

5.2 KAGGLE

TBA
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(a) AUC[ROC] (b) AUC[BEDROC] (c) AUC[PR]

Figure 3: These are performance on 6 selected tasks.

6 CONCLUSION

We get some quite promising and robust results using focused learning to handle the negative transfer
issue. But there are still some other challenges.

Now we fix the negative transfer for focused task case, and if we want to generalize this to more
focused tasks, that can trigger more open questions. Of course we can always separate n-focused-
task problem into n independent focused training problems, but how to simultaneous get them is not
trivial.

Another interesting issue remains like how to handle the temporal dependency. Fully utilize the
gradient is one powerful way, and how to rigorously prove this will be included in the full paper.

All the code is available at GitHub Repository.
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A ALGORITHM FOR MODEL-BASED POLICY

Algorithm 1 Value-based Method

Initialize Neural Network W0, initialize π0 = {1}T
repeat
πτ+1(Wt) = arg maxa∈{0,1}T Q(Wt, a)

L =
T∑
i=1

π
(i)
τ+1 · L(Y(i), f(X (i),W

(i)
t ))

update weight Wτ+1

until Convergence

Algorithm 2 Policy-based Method

Initialize Neural Network W0, and πθ
repeat
θτ+1 = θt + α · E

[
Q(Wτ , a)∇θτ log πθτ (a |Wτ )

]
L =

T∑
i=1

π
(i)
θτ+1
· L(Y(i), f(X(i),W

(i)
τ ))

update weight Wτ+1

until Convergence
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ABSTRACT

In a drug discovery pipeline, once a disease-relevant protein
target has been identified, researchers face the daunting task
of identifying chemical compounds that effectively modulate
that target. Experimental phenotypic screening of thousands
or millions of small molecules is time-consuming and expen-
sive, whereas virtual (computational) screening can provide
a small set of promising molecules that are more likely to be
active towards the target protein. It acts as a pre-processing
step for filtering the extremely large number of candidate
chemicals.

Here we focus on the SSB-PriA and RMI-FANCM targets,
and propose a standard pipeline in the real scenario. We also
argue that the most popular evaluation metrics in this domain,
area under the receiver operating characteristic curve, can
be misleading and compare it with other evaluation metric-
s, showing which provide real-world value. Furthermore,
we apply the most up-to-date models, including deep neural
networks and recurrent deep networks, and compare these
models in a real-world setting by assessing their ability to
prospectively prioritize active compounds. We stated that
ensemble models can show better performance, and first fig-
ured out the key components that make ensemble models
outperform others. We utilized a Simple Ensemble model
which can reach best performance to substantiate that the
usage of both binary and continuous labels is most important.
Moreover, we present a user-friendly framework for virtual
screening tasks based on Keras, a neural network library built
on top of Theano and Tensorflow.

∗Authors contributed equally

1. INTRODUCTION
Drug discovery is a very timely and expensive challenge. The
process starts by first identifying a target protein for which
we would like to induce an altering effect upon via interaction
with a compound. The interacting compounds are identified
by screen-testing tens of thousands of candidate compounds
with the target via a process called High-Throughput Screen
(HTS) in the pharmaceutical industry. These tests produce a
wealth of information that can be used for learning concepts
in the HTS domain. The tests themselves are automated,
but blindly testing millions of compounds can be timely and
costly in the long run. Thus, there is a crucial need for a
virtual screening process that acts as a preliminary step for
prioritizing among the candidate compounds.

Virtual screening includes two categories, structure- and
ligand-based methods. Structure-based methods will consider
the target structure and simulating the 3D structural interac-
tions of the target and compounds. This requires knowledge
of the structural properties and does not make use of historical
screening data in its decision process, forgoing the ability to
learn from the past. Alternatively, ligand-based methods as-
sume no structural information on the target and uses the data
generated from the HTS process along with machine learning
techniques in order to learn concepts (e.g. if a compound will
most likely bind with a target or not).

In this paper we will introduce a complete process to de-
velop a ligand-based model on a newly generated screening
benchmark. Apriori, we identify classes of models we want
to try. Each class defines a set of models that can be tuned
via parameters, and so, in the first stage we manually select a
subset of these parameters. We further prune these selected
models using a subset of the dataset and advance them to the
next stage. Models that advance are then scrutinized further
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by k-fold cross-validation and hypothesis testing to better
assess generalization and prospective performance. In the
final stage, we re-assessed our model generalizations on a
hold-out dataset, which is generated in parallel to previous
stages.

In this paper, we make the following contributions:

• An in-depth multi-stage approach to virtual screening
in a collaborative setting between in-vitro and in-silico
groups. In-vitro results are handed to the in-silico group
for analysis, model-training, and future hit proposals.
We further analyze the next batch of tests to judge the
generalization of the initial models.

• We put different classes of models against each other
on a real-world screening dataset. All illustrate ligand-
based machine learning models outperform structure-
based docking models.

• We analyze the different metrics used in the field of
virtual screening and conclude which metric best coin-
cides with the number of hits found. Unsurprisingly,
each metric can attribute to bias for model selection, but
the choice of metric indirectly affects model selection.

• We carefully scrutinize the prospective screening results
to showcase that ensemble methods can work better,
and introduce a Simple Ensemble model that can reach
best performance. By this, we illustrated that where
both binary and continuous labels are used yield most
powerful models.

2. BACKGROUND

2.1 Dataset
Our case study is on a newly generated dataset [12, 34] SSB-
PriA and RMI-FANCM dataset. The Keck laboratory has
conducted in-vitro high-throughput screening on two interac-
tions: SSB-PriA and RMI-FANCM. SSB and PriA are two
proteins, and the target is whether or not the involvement of
a molecule can prevent their binding. Similar cases for RMI
and FANCM. This dataset consists of 5 labels per molecule:
PriA-SSB AS , PriA-SSB FP , PriA-SSB AS %inhibition,
RMI-FANCM and RMI-FANCM % inhibition.

PriA-SSB alpha screen (AS) Retest: The alpha screen
assay was run initially on all 75k compounds as a single test.
Those that tested above a certain threshold (35% inhibition)
and pass chemical structural filters were tested a second time
in the same assay. Those that were confirmed in a secondary
AS screen (again above 35%) were marked as actives in the
binary labels. We considered an additional 25k compounds
for the prospective screen. In this set, actives were defined as
those with at least 35% inhibition that passed the structural
filter. We did not confirm hits with a secondary screen.

PriA-SSB fluorescence polarization (FP): This is a sepa-
rate assay for the same target run only on the initial hits from

the AS assay. Those that passed a threshold similar to the
AS ( 30%) were declared to be hits. The remaining values
(binary labels only) were set to zero.

RMI-FANCM : TBA.
In SSB-PriA and RMI-FANCM , the continuous data, %

inhibition, corresponds to the AS primary screening values.
Because secondary screens and structural filters are used to
define a high-confidence set of active compounds, there is
so single % inhibition threhsold that separates actives from
inactives. If we sort the compounds by % inhibition, the
binary labels will be segmented into pieces (Table 1), and
comparing to hard-thresholding binary labels, this is more
closely related to reality.

Table 1. Some examples onPriA-SSB AS . Molecule ID, actual binary label,
and corresponding % inhibition values.

molecule ID binary label % inhibition
SMSSF-0548062 1 41.611
SMSSF-0018649 0 50.607
SMSSF-0018695 0 61.131
SMSSF-0019318 0 70.299
SMSSF-0548079 1 71.333

To help learn a better chemical representation with multi-
task neural networks, we need more comprehensive screening
contexts to transfer useful knowledge. We use PubChem
BioAssay (PCBA) [36] for this purpose. PCBA uses a pre-
determined hard threshold on IC50. All the molecules above
this threshold are active and all below are inactive. The details
are in the appendix B.

2.2 Feature Representation
2.2.1 Extended Connectivity Fingerprint

Extended Connectivity Fingerprint (ECFP) [28] is a widely
accepted featurization mechanism to convert molecules to
fixed-length bit strings. It is an iterative algorithm that en-
codes the circular substructures of the molecule as identifiers
at increasing levels with each iteration. In each iteration,
hashing is applied to generate new identifiers, and thus, there
is a chance that two substructures are represented by the
same identifier. In the end, a list of identifiers encoding the
substructures are folded to bit positions of a fixed-length bit
string. A 1-bit at a particular position indicates the pres-
ence of a substructure (or multiple substructures) and a 0-bit
indicates the absence of any substructure. The number of
iterations, also called the diameter, d and length of the bit
string l is set by the user. We used the common setting of
d = 4 and l = 1024. Figure 1 illustrates the concept with a
small fixed-length bit string.

ECFPs are commonly used as features for molecules in pre-
dicting drug activity. [21] report that a Deep Neural Network
trained on ECFPs had similar performance to one trained on
molecular descriptors. We use them in a supervised learning
setting where the input features are the ECFP fingerprints and
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the target activity are the output labels. The goal is to train a
supervised learning model that is able to generalize to unseen
fingerprint instances.

Figure 1. ECFP fingerprints used in a supervised learning (SL) setting for
learning drug activity. .

2.2.2 Simplified Molecular Input Line Entry System

The second option for feature representation is [37] Sim-
plified Molecular Input Line Entry System(SMILES). Each
molecule can be represented via a SMILES sequence, which
consists of around 35 different characters. For example,
c1cc(oc1C(=O)Nc2nc(cs2)C(=O)OCC)Br is a canonical S-
MILES for the molecule in Fig. 2. Each alphabet represents
an atom, except for Br, Cl, and Si, any sequence between two
same number is a ring.

Figure 2. Canonical SMILES is c1cc(oc1C(=O)Nc2nc(cs2)C(=O)OCC)Br.

Data augmentation has been widely accepted in [35] im-
age classification problem, like rotating, mirroring, adjusting
contrast images. The fundamental ideas behind data augmen-
tation is that input data are first mapped into a latent feature
space so that predictions are made on this space. The usual
way people do is manual feature extraction, which in theory
is worse than this learned latent feature space. This latent
space possess the advantages of both fully representing the
data and well understood by computer.

[14] Data augmentation has also been applied in virtual
screening works to get more SMILES strings. There are
specific rules to generate canonical SMILES , and we ran-
domly pick up some starting points to go over the graph for
augmentation.

3. METHODOLOGY

3.1 Models
We selected a large number of existing virtual screening
approaches for our benchmarks and prospective predictions.
These included a variety of supervised learning approaches,

structure-based docking, and a chemical similarity baseline.
To elaborate which model require what kind of labels and
targets, we specify it in Appendix. F.

3.1.1 Neural Networks

Deep learning is a powerful machine learning method that
has benefited greatly from advancements in training algo-
rithms, GPU architecture, large amounts of labeled data, and
software frameworks. One of the potential powers of deep
learning is its ability to extract latent features. In traditional
machine learning methods, the model build-up has two parts:
feature engineering and model training; but in deep learning,
it allows modelers to focus less on feature extraction, and
instead provide the "raw" feature, like image pixels in image
recognition and words in end-to-end natural language models.
The deep network can automatically learn the representative
features for the modeling task.

(a) Single-task Neural Network (b) Multi-task Neural Network

Figure 3. Deep Neural Network Structures. Only consider two layers, X as
input layer and Y as output layer, and parameters W between two layers.
Ŷ = σ(WX +b). Fig. 3(a) has only one unit on output layer. Fig. 3(b) has
multi units on output layer representing different targets.

Single-task neural network: Network structure is de-
scribed in Figure 3(a). For the three binary SSB-PriA and
RMI-FANCM targets, take ECFP as input features, train a
neural network on each of the three binary targets. In re-
gression problem, we can apply the same network structure
as before, but use % inhibition instead of binary labels. It
can enrich the model performance by providing continuous
labels.

Multi-task neural network: The very first idea was ap-
plied by winner in [5,6] Merck Molecular Activity Challenge.
As showed in Figure 3(b) , the intrinsic idea is transferring
knowledge among tasks can improve the overall performance,
which is so called the multi-task effect.

Single-task Atom-level LSTM: Long Short Term Memo-
ry (LSTM) is one of most prevalent recurrent neural network
(RNN) models. RNN takes advantage of four inner cell units,
which can keep memories from past history then make pre-
dictions for the next units. We take SMILES as input feature,
and apply [24] skip-gram language model. First for each
molecule, use one-hot vector to represent each atom. It takes
the context for each character and embeds to a feature space.
The output prediction is binary label against the target.

Influence Relevance Voter (IRV): IRV, introduced by
[19, 32], is a hybrid between k-nearest-neighbors and neural
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Figure 4. LSTM Structure. Input Layer is padding each molecule compound
to a fixed size [91×1] vector. Embedding layer is to embed each atom in
SMILES to a fixed vector, and in our case is [10×1] vector. So the whole
matrix for one compound is [91×10]. For recurrent layer, we apply LSTM
units. Output layer is simply the active or inactive label prediction.

networks. The idea is that a molecule’s label prediction is
computed by nonlinearly combining the predictions of its
nearest neighbors. This nonlinear combination takes into
account the predictions and the similarity of the neighbors.
The weights of combining the neighbor predictions are repre-
sented by a simple neural network.

3.1.2 Ensemble Models

Ensemble model comes from the idea that different models
can have preference to different kinds of predictions. And
when considering all the models together, we might be able
to reach better performance.

Random Forest: Randomized decision tree ensembles
have been successful on many problems due to its variance
reducing power. The idea is to build n decision trees with
random subsamples of training data and random subset of the
features. The classification results on a new point are then
averaged from the n decision trees.

Calibrated Boosting-Forest: [39] builds a two-layer en-
semble XGBoost framework [3]. The first layer consists of
four base models: boosted tree and linear regressor with bi-
nary and continuous label, while the second layer perform as
an ensemble model on top of it.

Simple Ensemble: We introduce a very simple ensemble
method. First we train some base models, like single-task
classification network, single-task regression networks, or
random forest. Then for each compounds, get the higher rank
on each of the base models and use this newly generated
order as the prediction confidence on each compounds.

3.1.3 Structured-based Method: Docking

Extension of work from [9] previous paper on traditional and
advanced consensus scoring methods for docking-based VS.

3.1.4 Chemical Similarity Baseline

In the prospective screening stage, we introduced a simple
baseline based on chemical similarity to the known active

compounds, which is representative of standard practice in
high-throughput screening. For each of the 25k compounds
in the prospective screening set, we computed the Tanimoto
similarity with all of the PriA-SSB AS actives using the ECFP
fingerprints. We kept the best similarity over all PriA-SSB
AS actives as the compound score and ranked compounds to
prioritize those that were most similar to a known active.

3.2 Evaluation Metrics
The area under the receiver operating characteristic curve
(AUC[ROC]) has been widely accepted in [16, 18, 22, 26,
27]. ROC curve plots the relationship between true positive
rate (TPR) or sensitivity and false positive rate (FPR) or
specificity, which is defined in equation (1). As the false
positive (FP) rate goes to 100%, all ROC curves will converge,
so we may as well focus on the low FP rate part which can
be more distinguishable among different ROC curves. Thus
we consider the concentrated ROC (BEDROC) introduced
in [31]: it enlarges the early ROC curve by some scaling
function.

T PR =
T P

T P+FN
, FPR = FP

FP+T N (1)

Recall =
T P

T P+FN
, Precision = T P

T P+FP (2)

Area under the Precision-Recall curve (AUC[PR]) defined
by equation (2) is another option. AUC[PR] has the advantage
of highlighting classifier performance on identifying a class
of interest, particularly in highly skewed datasets where the
focus might be on positive instances. It is worth noticing
that [8] proves there exists interpolation issues in computing
AUC[PR] and provide an improved algorithm, and we also
apply it.

Another common metric is enrichment factor (EF) which
is the ratio between number of actives found in the top R
predictions vs. the number of actives found at random. In
other words, how much better does the method perform over
random guessing based on the distribution of actives. Let
R ∈ [0%,100%] is a pre-defined float number.

EFR =
# actual pos present in top R ranked predictions

# actual pos × R
(3)

EFmax,R =
min{# actual pos, sample size × R}

# actual pos × R
(4)

EFmax,R represents the maximum enrichment factor possi-
ble at R. Difficulty arises when interpreting EF scores as they
vary with the dataset and ratios. We introduce the normalized
enrichment factor (NEF) defined below:

NEFR =
EFR

EFmax,R
(5)
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As NEFR ∈ [0,1], this makes it easier to compare perfor-
mance based on enrichment factor; 1.0 is perfect enrichment
factor. Furthermore, we can plot NEFR vs. R ∈ [0%,100%]
to get AUC[NEF] ∈ [0,1].

We train regression models for the continuous % inhibition
scores. The output of these models are then used as if they
were confidence scores analogous to probability scores; high-
er scores equate to more confidence in being active. These
confidence scores are then corresponded with the binary la-
bels. With this treatment, the introduced evaluation metrics
apply directly.

3.3 Pipeline
Our virtual screening assessment contains three stages:

1. Tune hyperparameters in order to prune the model
search space.

2. Rank models on 5-fold cross-validation results and ap-
ply hypothesis testing for different metrics.

3. Assess all models’ ability to prospectively identify ac-
tive compounds from a new set.

In contrast to most other virtual screening studies, the
prospective screens were not conducted until after all models
were trained and evaluated in the cross-validation stage.

3.3.1 Hyperparameter Sweeping Stage

Hyperparameters are the parameters of a model that can be
set by an expert as opposed to the weights or parameters that
are learned during training. In the context of deep networks,
the hyperparameters can be the number of hidden layers, the
number of hidden units in each layer, types of activation
functions, drop out ratios, types of regularizer, etc. In random
forest, hyperparameters can be the number of trees, the size
of the subsamples, the size of the subset of features, etc. In
this stage, we apply grid search on a manually defined set of
hyperparameters in order to prune the models considered for
subsequent stages.

We first split the 75k SSB-PriA and RMI-FANCM dataset
into 5 stratified folds as described in Appendix A. In this
stage, we will use first 4 folds for hyperparameter sweeping,
and all details are shown in Appendix G. The purpose of this
stage is pruning models, so it can guarantee that our model is
not chosen randomly.

3.3.2 Cross-Validation Stage

We will apply models described in section 3.1 after tuning
hyperparemeters, and the classical cross-validation training
strategy will be applied. The goal of this stage is to filter out
the most promising models for the real application.

One of the biggest challenges is to select best models.
Ideally, the best model can have overwhelming performance
on all evaluation metrics, but this is hard to reach with existing

models. And this problem can get more complicated when
we use different evaluation metrics, for each of them may
reveal different model performance ranks. We will illustrate
how to choose the optimal models and evaluation metrics
under various circumstances.

3.3.3 Prospective Screening Stage

In the real setting, a small molecule screening facility has
limited funds to purchase compounds. We adopt this set-
ting by providing each model a budget of 250 compounds,
screening their predictions, and assessing which identified
the most active compounds. The optimal models will find
as many positive compounds as possible within the funding
restriction.

This stage can also further verify our conclusions from
previous stages. We show empirically that under this setting,
NEF can better represent the model’s learning ability.

4. CROSS-VALIDATION RESULTS
In this stage we want to assess and compare 41 models using
the 5 folds across different metrics. The following summa-
rizes the steps for this stage:

1. Models: 8 deep neural networks (DNN), 8 random
forests (RF), 5 IRV, 6 calibrated boosting-forest(CBF),
and 14 docking.

2. 5-fold cross-validation is done for RF, CBF, IRV and
docking. 4 by 5-fold cross-validation is done for DNNs,
since neural network requires an extra dataset as early
stopping criterion. Each produces a test set score. We
will discuss the plottings in

3. For each fold iteration, on the test set, we
record: AUC[ROC], AUC[PR], AUC[NEF],
and EF/NEF at the following percentiles
[0.001,0.0015,0.005,0.01,0.02,0.05,0.1,0.2].

For each iteration of k-fold cross-validation, in deep neural
networks and IRV we pick 3 folds for training and 1 fold for
validation and early stopping. For random forest, since the
sklearn implementation does not implement early stopping,
we train on the complete 4 folds. This may cause slightly
biased decisions, and we will discuss further in Section 4.

To compare multiple models, we can use statistical tests
that account for the multiple testing problem. We use Tukey’s
range test for pairwise comparison to assess whether the
mean metrics of two models are significantly different. In
the event that the Tukey test does not produce significance,
and seeing how we are trying to mimic a real scenario, we
perform an ad-hoc comparison based on the absolute metrics.
We propose the following for each metric:

1. Compare models using Tukey’s range test on the test set
scores. The result of this step assigns wins to models
for which Tukey’s test finds significance.
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2. Rank models based on results of Tukey’s test.

With this, we hypothesize that these top performers will
perform the best on the new 25k molecule dataset. We will
affirm this statement when we go to the prospective screening
stage.

4.1 Evaluation Metric Plotting
We select 6 out of 41 models, and plot the corresponding
evaluation values on training, validation, and test dateaset in
Figure 5.

(a) AUC[ROC] (b) AUC[PR]

(c) AUC[BEDROC] (d) EF

Figure 5. Six models trained on task PriA-SSB AS . Plot evaluations on
training, validation, and test set. Random forest model does not require a
specific validation set for early stopping, so its corresponding evaluation
values are set to 0.

The overall performance using AUC[ROC] are compara-
tively promising on all models, where all but LSTM can reach
around 0.8. And among all, random forest shows to be the
best model, reaching approximately 0.9. This conclusion still
holds when we turn to AUC[PR] and AUC[BEDROC], but
they also introduce another problem: as one noticing observa-
tion from the plot, the huge gap between training, validation,
and test set on most models. Obviously single-task and multi-
task networks and random forest get overfitted on training
set, reaching almost 100% AUC, and it drops dramatically
on both validation and test set.

One possible explanation is the inappropriate representa-
tion of compounds. Given the fact that we use only 1024
fingerprints, the reason can be either the bits of fingerprints is
not large enough, or fingerprint alone cannot fully represent
the compound from the machine learning models’ aspect. To
check the first reason, we try to extend the number of bits,
like 4096, but it has show no remarkable improvements. In
addition, since fingerprints are generated from canonical S-
MILES, which can be treated as a sequence of atoms, we may
as well add the recurrent network to check the second reason.
And as in Figure 5, vanilla-LSTM does show smaller gap,
but its performance is worst among all the models plotted.
So from the aspect of stability, vanilla-LSTM proves to be
promising, but when considering the model accuracy, it is far

from expectation. Interestingly, both single-regression and
IRV present comparatively stable performance. The reason
that regression models can be helpful here is because our
virtual screening is rank-based, and it may better discovery
the information decoded in the continuous %inhibition. For
IRV model, it finds the nearest neighbors based on a simi-
larity score. The input to the IRV model will then be the
similarity scores of the k-nearest-neighbors. This can help
explain the stability since IRV does not directly learn from
the fingerprints.

Figure 6. Normalized enrichment factor (NEF) on task PriA-SSB AS . NEF
is defined in Equation 5. We plot the corresponding continuous values
R ∈ [0,0.15].

The normalized enrichment factor curve in Figure 6 is
another interesting metric. We can see random forest consis-
tently outperforms other methods by a considerable margin
even as we increase the percentiles.

4.1.1 Can AUC[ROC] be misleading?

We argue that AUC[ROC] is not a representative evaluation
metric, sometimes even misleading. We can observe that
under some circumstances, other evaluation methods like [8]
AUC[PR], [31]AUC[BEDROC], and AUC[NEF] can reveal
quite different attributes of models. We draw attention to
several empirical evidence we have found.

On the previous hyperparameter sweeping stage, the deci-
sion will be hard to make if we are focusing on AUC[ROC].
See appendix G. However, once we also consider AUC[PR],
AUC[BEDROC], and EF, the difference between models is
much more obvious.

In the cross validation results, most models reach promis-
ing performance on AUC[ROC], and the top models have
approximately same evaluation values. But when focusing on
AUC[PR], AUC[BEDROC], EF, and AUC[NEF], the differ-
ence among such top models can be huge. Brief understand-
ing is that, compared to PR and EF, ROC focuses more on
true negative(TN) case. While in the virtual screening tasks,



D
R

A
FT

Shengchao Liu Application for CS Ph.D.

due to the highly skewed data, most predictions will be close
to 0 or negative. So focusing too much on TN will give a
biased performance evaluation.

4.1.2 Multi-task Effect

In general, multi-task network can achieve better performance
than single-task network due to its ability to transfer knowl-
edge among all tasks. And such benefit is called multi-task
effect. [27] explains the multi-task effect: similar tasks can
benefit from training on shared active compounds.

In our experiment, we combine the Keck task with 128
PCBA tasks during multi-task training, and as shown in 5,
it does not present considerable improvements comparing
with single-task. If we assume multi-task effect comes from
learning a better and generalized latent space, then one pos-
sible explanation is that multi-task model can extract better
feature representation only when tasks are highly correlated,
and all three newly generated Keck targets have no similarity
with 128 PCBA tasks. To verify this, there is no sharing
compounds between PriA-SSB AS and PCBA, so from the
data’s aspect, these two sets of tasks share no similarity; and
based on the domain knowledge, PriA-SSB AS is not related
to PCBA.

4.1.3 RF outperforms other models

As to what makes random forest best, we have two assump-
tions: (1) The 3 tasks possess very extreme label imbalance
issue, and in methods like deep neural network, validation
set are required either for early stopping or layer prediction.
(2) Random forest is better than other methods due to its
model design and dataset properties. Because [6] all previous
models are using hard threshold, they are able to conclude
that neural network is better.

4.2 Tukey-Based Universal Confidence Inter-
vals

We conduct Tukey’s range test to compare our models. One
way to summarize the results of this test is to use universal
confidence intervals as introduced in [13]. It plots the mean
and confidence intervals based on Tukey’s Q critical value
of each model. If the universal confidence intervals of two
models overlap, then there is significance. Otherwise, no
significance is detected. Figure 7 showcases the plots for
three metrics-label pairs. The total 54 plots for each metric-
label pair can found at URL and the appendix L.

4.2.1 Model Comparison Results

We rank models for each metric-label pair based on Tukey’s
test results. This can be thought of assigning “win” points
to each model. We summarize these results in a table at
URL and the appendix I. Random Forest and CBF models
consistently place in the top 5 ranks for each metric-label pair.
Table 2 shows the percentage of model overlap in the top 5
of each metric-label pair.

(a) AUC[ROC] (b) AUC[PR]

(c) AUC[BEDROC] (d) AUC[NEF]

Figure 7. Tukey-Based Universal Confidence Interval for PriA-SSB AS .

With this, we have a ranking among models for each metric-
label pair that we can revise when we perform prospective
screening.

Table 2. Percentage of model appearance in the top 5 over all metric-label
pairs in cross-validation stage.

Model Overlap
Percentage Model Overlap

Percentage
CBF_c 54.3% SingleRegression_b 23.9%
RandomForest_h 53.2% RandomForest_d 21.7%
RandomForest_g 46.7% RandomForest_b 19.5%
CBF_b 41.3% SingleRegression_a 18.4%
CBF_d 40% CBF_a 17.3%
CBF_f 36.9% RandomForest_c 15.2%
RandomForest_e 28.2% RandomForest_a 14.1%

4.3 Metric Discussion
In section 4.1.1 we describe one case where we observe
AUC[ROC] cannot fully explain the model performance. And
to apply for the ultimate goal, we introduce nhits as ground
truth. In order to determine which metric relates to nhits in
a more rigorous and comprehensive way, we compare the
model ranking induced by each metric with the model ranking
induced by nhits. Figure 8 are sample plots showcasing the
correlation between nhits and different metrics.

If all points lie on the x= y curve, then the metric coincides
perfectly with nhits. As what we observe from Figure 8, in
general, the metric reveals that enrichment factor proves to be
a more promising evaluation metric. This can be caused by
the fact that in the real scenario, the number of positive hits in
top ranked compounds is what chemistry people care about,
and by definition, enrichment factor and normalized enrich-
ment factor are the two closest evaluation metrics. Of course
such conclusions may change as we come up with more in-
sightful feature representation, machine learning algorithm,
and domain requirement. Just for the current setting, we may
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(a) nhits and AUC[ROC] (b) nhits and AUC[PR]

(c) nhits and NEF

Figure 8. Metrics comparison on task PriA-SSB AS . Fig. 8(a) to Fig.
8(c) correspond to the model ranking comparison between hits = 5000 and
AUC[ROC], AUC[PR], and NEF respectively.

as well conclude that with fingerprint as input feature, and
all the models we have trained, combine with the application
which focuses more on top hits, enrichment factor shows to
be a more illustrative and promising evaluation metric.

Note that we perform these comparisons with nhits at vari-
ous ntests. To get an effective score for ranking metrics, we
use Spearman’s rank correlation coefficient based on the rank-
ings induced by the metric of concern vs. nhits at a specific
ntests. We can then rank the metrics based on their correlation
coefficient. The entire metric ranking results can be found at
URL and the appendix J. The main takeaway is that ranking
of metrics varies by ntests performed; some metrics overtake
one another as we increase or decrease ntests. However, NEFR
seems to be consistently placing in the top ranks in such a
manner that R coincides with ntests. This is evident when we
just focus on a single label and see the top ranking metric-
s for ntests ∈ [100,250,500,1000,2500,5000,10000]. This
suggests that if we know apriori how many ntests we’d like to
perform, then NEFR at a suitable R is an appropriate metric.
With this, we have a ranking among metrics at various ntests
that we can revise when we perform prospective screening.

4.4 Closer Look at STNN and RF
We will investigate the performance different between single-
task neural network (STNN) and random forest (RF) starting
from comparing the predicted results on target PriA-SSB AS
.

As what can be observed from Table 3, the predicted val-

Table 3. This is the comparison between single-task neural network (STNN)
and random forest (RF) on the testset. We picked first 4 folds for training
and validation, last fold as test set, and all the positive molecules listed here
are positive towards target PriA-SSB AS . The column pred represents the
predicted values, and rank is the ranking of corresponding predicted values
out of all the 14486 molecules in testset.

molecule
id

STNN RF
pred rank pred rank

14425 0.000002 14219 0.000000 8666
14427 0.160746 8 0.251750 1
14428 0.000026 1261 0.001500 1440
14429 0.708671 5 0.147250 7
14431 0.000028 1088 0.004000 442
14436 0.920472 4 0.169500 5
14437 0.069630 10 0.122250 14
14438 0.000193 116 0.089500 20
14439 0.040926 13 0.082250 25

ues on some molecules, STNN is more confident and closer
to 1, although the ranking are almost the same with RF, like
molecule 14429. But there are also some molecules predicted
to be closer to negative on both models, but getting compar-
atively higher ranking in random forest. We collect these
molecules set as S = [14425,14428,14431,14438]. One nat-
ural assumption is that maybe the neural network is trained so
well, that for each molecule in S, the most similar molecules
in the training set are actually negative. This assumption is
reasonable considering that using 1024 fingerprints as fea-
ture may lose some information and cannot fully reveal the
molecule structure. And Table 4 verifies our assumption. We
have more comprehensive tables in URL .

Table 4. We pick up top 10 molecules in the training set that are closest
to molecule 14425 (active compound). The similarity is Tanimoto similarity.
The RF can return only the important features, which is the set of important
bits in 1024 fingerprint, and the second similarity is based only on such
important bits. In the column true label, 0 and 1 represent inactive and
active respectively. Here the closest 10 molecules towards 14425 are all
negative.

molecule
id

similarity similarity
(important)

true label

33815 0.910714 1.0 0
33834 0.786885 0.928571 0
33792 0.774194 0.928571 0
19401 0.762712 0.666667 0
925 0.704918 0.733333 0
33820 0.693548 0.588235 0
33825 0.683333 0.615385 0
33833 0.681818 0.714286 0
19423 0.681818 0.8 0
4912 0.677419 0.666667 0

The third column in Table 4 highlights feature importance
in tree-like drug discovery models. Combining Table. 3, we
may conclude:

1. For the molecules that have very similar molecules (like
where Tanitomo similarity is over 0.7) in the training set,
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both models can perform quite accurate predictions on
some molecules. And NN is more confident, almost all
above 0.8. The predicted values generated by tree-like
models are almost less than 0.6.

2. For the molecules that have less similar molecules in
the training set, both models predict badly. RF model
has higher predicted values and ranks, but STNN will
more confidently predict them to be negative. And this
explains what we observe from Figure 5, 6, and 7, that
the evaluation methods on tree-like models are better.

So we may as well guess that, the predicted results from
single-task NN have more correlation to its counterparts in
the training set, while tree-like models somehow are less
likely to attach to the training set. That’s why for some
true-positive predictions, NN is more confident. If we can
have more generalized and perfect featurization strategy, the
performance on STNN can get improved.

Also, we may ask this following questions: If the predicted
values are so small, less than 0.01, why do we take this part to
evaluate the performance. For example, for molecule 14425,
NN predicts it with probability 0.000002 to be true, and RF
predicts it to be 0.00063. In the real setting, it will not matter,
because both are not trustworthy. And coming back to our
choice on the evaluation metrics, the EF with low EF ratio can
overcome this problem, while AUC will be over-optimistic
on the RF.

5. PROSPECTIVE SCREENING RESULTS
A molecule facility would like to in-vitro test compound ac-
tivity bindings to a protein. The molecule facility has funds
to purchase ntests compounds, and expect to maximize their
return on investment by having most numbers of compounds
with an active bind. Define nhits as the number of active hits
from the ntests tested compounds. This scenario illustrates
the importance of maximizing the nhits for tests, as active
hits can help guide the search for more actives. As discussed
in 3.2, different evaluation metrics have been used to assess
virtual screening methods. For our model comparisons in this
stage, we will use nhits as a means to assess each evaluation
metric in terms of how they translate to real-world value. We
want to identify metrics that are positively and linearly corre-
lated with nhits. The following summarizes the prospective
screening stage setting:

1. We will continue running the 41 models we have in
cross validation stage. But to clarify some statements,
we also add two extra methods, the ensemble neural
network and chemical similarity baseline.

2. Each model is trained on the initial 75k molecule dataset
with the later 25k molecule dataset as the test set.

3. On this test set, we record: AUC[ROC], AUC[PR],
AUC[NEF], and EF/NEF at the following ratios
[0.001,0.0015,0.005,0.01,0.02,0.05,0.1,0.2].

4. Use fourth library as test set, and record nhits
on the top ntests ranking probability predictions
from the models. We compute nhits for ntests ∈
[100,250,500,1000,2500,5000,10000].

This stage has only one recording for each metric, thus, we
can only compare models directly. We propose the following
to assess the goals:

1. For each metric, identify the top Mbest performers on
the held-out dataset. Analyze the amount of overlap
between the top Mbest performers in CV stage and PS
stage for the same metric.

2. For nhits for ntests ∈
[100,250,500,1000,2500,5000,10000], identify
the top Mbest on the held-out dataset. For each metric in
CV stage results, and for each nhits in PS stage results,
analyze the amount of overlap between the top Mbest
performers in CV stage and PS stage.

The first step helps answer the first goal by analyzing which
models retained their ranking as top performers. The second
step gives us a measure on how well each metric was able to
reflect real-life value, i.e. if the top performing models based
on a metric are still the top performing based on nhits.

5.1 Focused Study: Hits in Top 250
In our last library of compounds, on target PriA-SSB AS
, expected purchase limit allows us to screen 250 out of
the overall 25k compounds. We strictly follow the model
rank given by NEF in figure 7(d), and the corresponding hit
numbers and similarity by clustering are presented in Table
5.

Table 5. Number of active hits in top 250 predictions on 8 selected models.
The 8 selected models are best among each algorithm, and the number
of hits on all models can be found in Appendix R. The last two columns
correspond to two clustering methods, and we use this to show how diverse
molecules our models can find. Both algorithms have 40 clusters in all.
SIM was identified by Wards clustering based on Tanimoto from ECFP4
fingerprints. MSC identifies a maximum common substructure which will be
further used to group compounds.

model name number
of hits

SIM MCS

Baseline 33 16 18
Docking_fred 2 2 2
IRV_e 30 16 19
CBF_c 48 24 25
RandomForest_h 41 21 25
STNN-C_a 25 12 15
STNN-R_b 35 20 20

As we can see, almost all the supervised machine learn-
ing methods can beat baseline. As what is shown in Table
5, ensemble neural network shows best performance, fol-
lowing calibrated boosting-tree, random forest and STNN
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Regression model. Ensemble neural network is taking the
higher rank for each compound using SingleClassification_b
and SingleRegression_b. Docking’s performance is not very
promising according to the number of hits. But when we
plot the overlap of all the top 250 predictions (Figure 9) the
docking program is able to find 2 unique active compounds,
as shown in Figure 9.

Figure 9. An UpSet plot showing the overlap between the 8 selected mod-
els. The plot generalizes a Venn diagram. Dock_dock6 is one docking
program, STC and STR are single-task classification and regression re-
spectively. RF is random forest, and CBF is calibrated boosting-forest. The
complete intersections for all models are in Appendix S.

We can observe that supervised learning methods can re-
produce similarity to some extent, but each of them can find
unique actives as well. For example, most machine learning
methods, including the baseline model, can agree on 27 ac-
tive compounds, where single-task regression only share 14
among them. Random forest, on the other hand, is able to
identify 2 unique actives, which is missing by other methods.
And docking, even though the total hits is lower, but can
still find two unique molecules. These convince us to keep
using supervised methods. Then a natural and better solution
comes to our mind is to use ensemble method, to combine the
benefits from each models. In section 5.1.1, we will describe
why ensemble method is better, and how to reach it.

5.1.1 How Ensemble Model Helps

In Figure 9, we can clearly see how different each model
capture actives. Recall that both the ensemble neural network
and CBF are ensembling classification and regression model-
s. And we want to make a statement that blindly ensemble
models may be helpful, but it can help most when we can
ensemble both the regression and classification models. Here
are two observations help substantiate this point. (1) Recall
that random forest itself is an ensemble method, which aver-
ages over the predictions made by various trees. But all the
trees are classifiers, no regression process is included. (2) The
Simple Ensemble’s performance also verifies this point be-
cause it only includes one classification and regression model.
The simple ensemble method identifies 49 active compound-
s in its top 250 predictions, covering 25 SIM clusters and
26 MCS clusters. This performance is comparable, and s-
lightly better than, the best model in Table 5. We conclude

that while ensembling classification and regression models, it
can fully utilizes its data by considering both the binary and
continuous labels. This can be explained from the machine
learning theory’s point, when we double the data for training,
the PAC-bound becomes smaller.

We can draw another conclusion that, simply adding more
base models won’t help improve performance. The best cali-
brated boosting-tree has 10 base models, and Simple Ensem-
ble can reach better performance with one classification and
regression model. How to reach the best ensemble models is
still not clear, but this is an interesting future work. Now we
would recommend to follow the principle that simple is best,
try different base models, select the best one classification
and regression model and then do ensemble on them. We
did not try other ensemble methods to keep our hypothesis
space consistent and fixed, but it worth exploring different
base models with different ensemble strategies.

5.2 Model Comparison
For the following sections, since the ensemble neural net-
work consists of rankings, we will not calculate its evaluation
metrics, and we will replace calibrated boosting-forest with
ensemble method . We rank models for each metric based on
the raw scores on the single test in Table 6.

Table 6. We show 3 main evaluation metrics on 6 selected models. Dock_6
is Docking_dock6, CBF is calibrated boosting-forest, RF is random forest,
STC and STR are single-task classification and regression respectively.
More comprehensive results can be found in URL and the appendix M.

model AUC[ROC] AUC[PR] NEF@1%
Dock_6 0.566 0.153 0.036
IRV_d 0.753 0.526 0.357
CBF_b 0.917 0.743 0.595
RF_g 0.838 0.614 0.488
STC_b 0.750 0.476 0.405
STR_b 0.883 0.637 0.417

For this stage, ensemble method models place in the top
5 ranks for each metric. In the CV stage, we had good
representation for random forest in top 5, but in this stage it
lags behind. Table 7 shows the percentage of model overlap
in the top 5 of each metric.

Table 7. Percentage of model appearance in the top 5 over all metrics in
PS stage.

Model Overlap
Percentage

CBF_a 89.4%
CBF_f 89.4%
CBF_c 89.4%
CBF_e 84.2%
CBF_b 68.4%
CBF_d 52.6%
SingleClassification_b 10.5%
RandomForest_h 10.5%
RandomForest_g 5.2%

Recall from the CV stage we have a ranking among models
for each metric based on the wins from the Tukey’s test (see
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appendix M). We compare the rankings achieved for each
metric in the CV stage vs. rankings in the PS stage. Again,
one way to perform this comparison is to Spearman’s rank
correlation coefficient. The full results for this comparison
can be found at P. To summarize, 14 out of 19 metrics achieve
over 0.8 correlation. AUC[PR] achieves ≈ 0.5 correlation
which indicates that it is not a consistent metric for judging
future performance. This is because by definition AUC[PR]
heavily depends on the class distribution (unline AUC[ROC])
which changed on the held-out test set.

5.3 Metric Ranking Comparison
As in the CV stage, we compare the rankings induces by
each metric vs. nhits at various ntests. We then compare
these rankings using Spearman’s rank correlation coefficient.
Results can be found at URL and the appendix N. Again,
NEFR seems to be consistently placing in the top ranks in
such a manner that R coincides with ntests.

We compare this with the metric rankings we achieved
from the CV stage ((see appendix J). This can be achieved in
two ways:

1. Take the difference between the correlation results of
CV vs. PS. Order from smallest-to-largest difference
to obtain ranking over metrics. See appendix Q. This
allows us to rank metrics on how well they maintain
similar correlation with nhits in CV vs. PS.

2. Compare the rankings induced by nhits at various ntests
in CV vs. PS using Spearman’s rank correlation. See
appendix Q. This tells us how well all metrics maintain
their ranks in CV vs. PS.

We combine both approaches above. From the first ap-
proach, we see again that NEFR places in the top 5 ranks.
From the second approach, we see that the correlation scores
are all above 0.49 except for nhits and ntests = 10000 which
achieves 0.22 correlation. This is mainly due to metrics like
AUC[PR] changing its ranking drastically from CV vs. PS.
These two results promote the use of NEFR with R set so that
it coincides with the ntests to be performed. In the CV stage,
we also concluded that NEFR should be used.

6. RELATED WORK
Virtual screening can be divided into structure-based and
ligand-based methods. Structure-based methods use the 3d
structure of drug drug target, and fits each of million of small
molecules or compounds. . Instead of the 3d simulation,
ligand-based methods do not use target information and focus
molecules: extract features from each molecule that explain
the activity towards the target.

Molecule Discrimination Deep learning methods showed
overwhelming results starting from [5, 23] Merck Molecular
Activity Challange, 2012. [7, 16, 20, 22, 27, 33] have been
investigating multi-task deep neural network and proved its

outstanding performance compared with classical machine
learning methods. Label imbalance is one of the most com-
mon challenges, and [2] tries to solve it with one-shot learn-
ing. An important note is that all of this work involved only
binary labels of target activity.

Fingerprints encode each molecule structure into fixed-
length bit-vectors where each bit represents one substructure.
Besides this, SMILES can be used to represent the sequential
atom orders, and therefore fed in as the model input. [14]
makes model comparisons based on input features, including
Recurrent Neural Network Language Model and Convolution-
al Neural Networks with SMILES, and shows that CNN is
best when evaluated on the log-loss. [10] proposes a different
structure called Atomic Convolutional Networks (ACNN),
very similar to CNN, but it contains the 3D information. [18]
solves the chemical-chemical interaction with CNNs by con-
catenating two SMILES strings.

Understanding how deep neural networks work is not a
trivial task. [17] decodes such black-box prediction using
influence function, while [30] explains it from a more bio-
informatics aspect.

Another alternative solution is what has been a recent-
ly emerging method called [11] generative adversarial nets
(GAN) model. GAN models contain a discriminator and a
generator. People feed the generator some "fake" or noisy
data points, so as to trick the discriminator; and the goal of
generator is to automatically generate molecules that a well
trained discriminator cannot distinguish. Finally when people
feed in random data, it can magically produce new molecules
that can be highly possible active against targets. [15] imple-
ments such similar framework, and it can produce molecules
that are highly possible to be true against target.

7. SUMMARY AND FUTURE WORK
To sum up, we argue that ensemble methods, especially en-
sembling on both classification and regression model, can
lead to better performance. This finding can be even more
valuable since in the real setting, it is hard to apply an explicit
threshold to separate actives and inactives, like what previ-
ous work has been doing; while the actual condition with
secondary screening is shown in Table 1. Furthermore, the
Simple Ensemble shows most promising results here, but
more complicated ensemble strategies are worth trial in the
future.

Recall that these models are pretrained, and most of them
can generalize quickly when applied to a large set of new
compounds. Supervised learning models can rank millions of
compounds in minutes, and our next step will test our newly
proposed ensemble methods on larger compounds and verify
predictions by high-throughput screening experiments.

Besides, in Figure 7 and Figure 5 tree-like models can
outperform neural networks. But what is well know that one
of the biggest advantages of deep network is its ability to learn
latent representation from input features. Here is fixed with



D
R

A
FT

Shengchao Liu Application for CS Ph.D.

1024 fingerprints, which is far away from the complete and
raw representation of one compound. In Merck challenge, it
is well acknowledged that multi-task learning can outperform
random forest. One highly possible reason for that is the
Merck compounds’ feature contains around 15k bits of values,
both the number of bits and type of information are more
comprehensive than the 1024 fingerprints. The cost is adding
more complexity to model. Many other representations can
be considered besides descriptors: 3d fingerprints, graphs,
etc.

Below are some other machine learning-model related
work that can be interesting in the future.

• [38] proposes adaptive methods like Adam, may not
perform as well as SGD, from the respective of accura-
cy.

• Apply more advanced embedding functions for recur-
rent network model.

• Explore the temporal relation and cross-validation deci-
sions.

• There is a huge generalization gap among the perfor-
mance on training set, validation set, and test set, and
this might be explained in the latest neural network
generalization work.

• Fingerprints have the potential benefit of representing
structures in molecule, but have the drawbacks not be-
ing able to revert it back to molecules, thus its interpre-
tation is harder. More interpretable and direct featuriza-
tion can be applied here.
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APPENDIX

A. DATA PROPROCESSING

A.1 Complex Matrix Composition
Each target dataset consists of compounds as rows, and for each compound it details the bio-chemical features such as structure,
SMILE info, interaction score results, and most importantly the activity outcome (binary or continuous). For our purposes of
featurization, we are only interested in the SMILES and activity outcome of the compounds. The first step was to extract these
two properties (SMILES and activity outcome) for each target and construct the data matrix for training. We used RDKit [1], a
ChemInformatics python library, for navigating and extracting from these datasets and for generating the fingerprints.

The second step was to merge the target matrices together into one consolidated matrix. We simply used an outer-join
operation with the SMILES as the key. That is, given two matrices A and B with two columns: SMILES and target-activity, an
outer-join operation will merge rows of A and B that have the same SMILES value into a new matrix M. If there is a row in A
with SMILES value s and no corresponding row in B with SMILES value s, then the merge would yield a row in M with an
empty target-activity for B. In the resulting matrix, each row is a compound and the columns are: SMILES, 1024-bit fingerprints,
and a column for the activity outcome of each target (a total of 5 columns for SSB-PriA and RMI-FANCM and 128 for PCBA).
As result, we have two data matrices: SSB-PriA and RMI-FANCM and PCBA, on which we can train either single task or
multitask learning methods. Note that merging all the targets introduces many empty cells for the activity outcome columns. For
the distribution of active, inactive, and missing for each target, refer to Appendix E. We can observe severe data imbalance; the
ratio of positive to negative is very small, ranging from 0.00009 to 0.48324 .

A.2 Fold Splitting
The whole data set was split into 5 fixed folds for cross validation. Label imbalance and the limited number of known active
molecules is one of biggest challenges in virtual screening and must be accounted for during modeling. Stratified split is a way
to divide data into sub-folds while keeping the same ratio for each homogeneous label.

For single-target task, stratified split can be implemented as combining folds after sampling each class of labels. But this
procedure will become more complicated when goes to the multi-task condition. All molecules will appear only in a subset of
131 targets, and merging all molecules into one big matrix, each row represents one molecule, and each column represents one
target. For each column (target), molecules can be missing, inactive or active. Similarly for each row (molecule), this molecule
can be missing, inactive, or active against the 131 targets. We divide this big matrix into 5 folds, while keeping the same data
distribution at the same time.

Algorithm 1: Multi-task Data Splitting
Input: Initial pre-split molecule-target matrix M, number of desired folds k
Output: k folds F[1], F[2], ..., F[k] containing stratified splits of M

1 shuffle rows of M randomly
2 create k folds F[1], F[2], ..., F[k] which contain the row indexes only
3 indexList← argsort columns of M from smallest active counts to largest
4 for i in indexList do
5 currColumn← M[:, i]
6 split active indexes of currColumn into the k folds
7 split inactive indexes of currColumn into the k folds
8 split missing indexes of currColumn into the k folds
9 uniquify each fold to remove duplicate row indexes

10 greedily remove overlapping indexes from each fold (fold-by-fold manner)

11 uniquify each fold to remove duplicate row indexes
12 return F[1], F[2], ..., F[k]

A.3 Label Imbalance
SSB-PriA and RMI-FANCM has three binary targets PriA-SSB AS , PriA-SSB FP , RMI-FANCM with only 79, 24, and 230
actives, respectively. To alleviate this class imbalance, one solution is to use a weighted schema. For single-target models, we
apply Eq (6).



D
R

A
FT

Shengchao Liu Application for CS Ph.D.

weight(negative) = 1, weight(positive) =
n
p (6)

where weightpositive and weightnegative are weight scalars for positive (active) and negative (inactive), respectively, and p and n
represent the number of positive and negative samples on this target.

Similarly, we apply the weighted schema to multi-task models, defined as Eq (7).

weight(negative, i) = si, weight(positive, i) = si · ni
pi

(7)

where weight(positive, i) and weight(negative, i) are weight scalar for positive and negative for ith target, and pi and ni represent the
number of positive and negative samples for ith target. ti defined as Eq (8)

ti =

{
∑i pi

pi
, ith target is in PCBA

α · ∑i pi
pi

, ith target is in SSB-PriA and RMI-FANCM
(8)

In the multi-task setting, we hope to give different weights to each target, and focusing more on the SSB-PriA and RMI-FANCM
targets and the PCBA targets that have fewer positive samples. We highlight SSB-PriA and RMI-FANCM by setting α = 100,
and alleviate the data skewness among targets by the term ∑i pi

pi
.

B. PCBA QUERY
Download from the PubChem BioAssay database here using the following query: TotalSidCount from 10000, ActiveSidCount
from 30, Chemical, Confirmatory, Dose-Response, Target: Single, NCGC. These limits correspond to the search query:
(10000[TotalSidCount] : 1000000000[TotalSidCount]) AND (30[ActiveSidCount] : 1000000000[ActiveSidCount]) AND “small
molecule"[filt] AND “doseresponse"[filt] AND 1[TargetCount] AND “NCGC"[SourceName].

Cited from [27].

C. SOFTWARE FRAMEWORK

D. SSB-PRIA AS DATA DISTRIBUTION

http://www.ncbi.nlm.nih.gov/pcassay
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Figure 10. PriA-SSB AS % inhibition complete data distribution.

E. PCBA AND SSB-PRIA AS DATA DISTRIBUTION

task name positive molecule number negative molecule number missing molecule number ratio = pos number
neg number

pcba-aid1030 15932 145369 335063 10.95970%
pcba-aid1379 561 196368 314806 0.28569%
pcba-aid1452 178 149367 362573 0.11917%
pcba-aid1454 513 115335 395935 0.44479%
pcba-aid1457 720 202110 308746 0.35624%
pcba-aid1458 5778 188852 311888 3.05954%
pcba-aid1460 5650 217010 283986 2.60357%
pcba-aid1461 2305 206016 301670 1.11885%
pcba-aid1468 1038 251148 259072 0.41330%
pcba-aid1469 170 272533 239423 0.06238%
pcba-aid1471 293 218258 293452 0.13424%
pcba-aid1479 793 269530 241180 0.29422%
pcba-aid1631 892 259030 251482 0.34436%
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task name positive molecule number negative molecule number missing molecule number ratio = pos number
neg number

pcba-aid1634 154 261988 250000 0.05878%
pcba-aid1688 2375 201910 305636 1.17627%
pcba-aid1721 1087 289651 220471 0.37528%
pcba-aid2100 1157 291855 218127 0.39643%
pcba-aid2101 288 309907 201813 0.09293%
pcba-aid2147 3473 188764 316586 1.83986%
pcba-aid2242 715 183374 327492 0.38991%
pcba-aid2326 1065 259688 250478 0.41011%
pcba-aid2451 2005 271718 236568 0.73790%
pcba-aid2517 1138 332123 177897 0.34264%
pcba-aid2528 652 340938 170054 0.19124%
pcba-aid2546 10556 267886 223298 3.94048%
pcba-aid2549 1211 230450 279424 0.52549%
pcba-aid2551 16671 253653 225301 6.57236%
pcba-aid2662 110 285240 226836 0.03856%
pcba-aid2675 99 248789 263309 0.03979%
pcba-aid2676 1081 357341 152793 0.30251%
pcba-aid411 1563 69057 440113 2.26335%

pcba-aid463254 41 329171 183043 0.01246%
pcba-aid485281 253 314347 197443 0.08048%
pcba-aid485290 938 335859 174561 0.27928%
pcba-aid485294 148 309649 202351 0.04780%
pcba-aid485297 9128 301294 192746 3.02960%
pcba-aid485313 7569 304194 192964 2.48821%
pcba-aid485314 4493 312590 190720 1.43735%
pcba-aid485341 1729 325703 183135 0.53085%
pcba-aid485349 618 319466 191594 0.19345%
pcba-aid485353 603 322454 188636 0.18700%
pcba-aid485360 1485 216997 292329 0.68434%
pcba-aid485364 10698 331470 159430 3.22744%
pcba-aid485367 557 325598 185584 0.17107%
pcba-aid492947 80 329301 182835 0.02429%
pcba-aid493208 342 41294 470318 0.82821%
pcba-aid504327 766 370995 139769 0.20647%
pcba-aid504332 30264 263754 188014 11.47433%
pcba-aid504333 15673 310114 170836 5.05395%
pcba-aid504339 16859 338757 139821 4.97672%
pcba-aid504444 7388 282993 214527 2.61067%
pcba-aid504466 4169 306751 197207 1.35908%
pcba-aid504467 7648 235607 261393 3.24608%
pcba-aid504706 201 302548 209346 0.06644%
pcba-aid504842 101 324570 187524 0.03112%
pcba-aid504845 100 372270 139826 0.02686%
pcba-aid504847 3509 376531 128747 0.93193%
pcba-aid504891 34 361224 151004 0.00941%
pcba-aid540276 4393 192748 310762 2.27914%
pcba-aid540317 2129 367917 140121 0.57866%
pcba-aid588342 25036 301746 160478 8.29704%
pcba-aid588453 3904 365862 138626 1.06707%
pcba-aid588456 51 384356 127838 0.01327%
pcba-aid588579 1980 384213 124123 0.51534%
pcba-aid588590 3931 352947 151487 1.11376%
pcba-aid588591 4700 367981 134915 1.27724%
pcba-aid588795 1307 376247 133435 0.34738%
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task name positive molecule number negative molecule number missing molecule number ratio = pos number
neg number

pcba-aid588855 4897 347556 154946 1.40898%
pcba-aid602179 364 384856 126712 0.09458%
pcba-aid602233 165 379055 132911 0.04353%
pcba-aid602310 310 393819 117857 0.07872%
pcba-aid602313 762 372273 138499 0.20469%
pcba-aid602332 69 408322 103836 0.01690%
pcba-aid624170 838 397756 112864 0.21068%
pcba-aid624171 1239 394674 115144 0.31393%
pcba-aid624173 487 399643 111679 0.12186%
pcba-aid624202 3968 362543 141817 1.09449%
pcba-aid624246 101 364511 147583 0.02771%
pcba-aid624287 423 302226 209224 0.13996%
pcba-aid624288 1356 323051 186533 0.41975%
pcba-aid624291 222 331803 180049 0.06691%
pcba-aid624296 9840 282428 210188 3.48407%
pcba-aid624297 6213 301951 197919 2.05762%
pcba-aid624417 6389 319289 180229 2.00101%
pcba-aid651635 3784 343160 161568 1.10269%
pcba-aid651644 748 353982 156818 0.21131%
pcba-aid651768 1677 355992 152950 0.47108%
pcba-aid651965 6346 318038 181566 1.99536%
pcba-aid652025 238 364167 147653 0.06535%
pcba-aid652104 7126 368557 129487 1.93349%
pcba-aid652105 4072 318365 185787 1.27904%
pcba-aid652106 497 362334 148968 0.13717%
pcba-aid686970 5948 331060 169340 1.79665%
pcba-aid686978 62375 236628 150918 26.35994%
pcba-aid686979 48532 257279 157953 18.86357%
pcba-aid720504 10170 340357 151599 2.98804%
pcba-aid720532 976 11815 498529 8.26069%
pcba-aid720542 733 356204 154626 0.20578%
pcba-aid720551 1265 341660 168106 0.37025%
pcba-aid720553 3259 336029 169749 0.96986%
pcba-aid720579 1908 280991 227489 0.67903%
pcba-aid720580 1508 304454 204826 0.49531%
pcba-aid720707 268 363257 148503 0.07378%
pcba-aid720708 661 356743 154231 0.18529%
pcba-aid720709 516 352850 158414 0.14624%
pcba-aid720711 290 363245 148471 0.07984%
pcba-aid743255 901 366915 143579 0.24556%
pcba-aid743266 306 398728 112956 0.07674%

pcba-aid875 34 73821 438407 0.04606%
pcba-aid881 590 103808 407308 0.56836%
pcba-aid883 1217 6647 503215 18.30901%
pcba-aid884 3396 6983 498521 48.63239%
pcba-aid885 160 12683 499293 1.26153%
pcba-aid887 1017 68423 441839 1.48634%
pcba-aid891 1564 6012 503156 26.01464%
pcba-aid899 1773 6141 502609 28.87152%
pcba-aid902 1865 117072 391494 1.59304%
pcba-aid903 338 52451 459169 0.64441%
pcba-aid904 528 50430 460810 1.04700%
pcba-aid912 453 56178 455212 0.80637%
pcba-aid914 221 7524 504330 2.93727%
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task name positive molecule number negative molecule number missing molecule number ratio = pos number
neg number

pcba-aid915 421 7524 503930 5.59543%
pcba-aid924 1144 118813 391195 0.96286%
pcba-aid925 39 64140 448078 0.06080%
pcba-aid926 345 56230 455376 0.61355%
pcba-aid927 60 58565 453611 0.10245%
pcba-aid938 1781 60720 448014 2.93314%
pcba-aid995 699 65056 445842 1.07446%

PriA-SSB AS 79 72344 439794 0.10920%
PriA-SSB FP 24 72399 439849 0.03315%
RMI-FANCM 230 49566 462270 0.46403%
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F. DATASETS ON MODELS

model PriA-SSB AS
Binary

PriA-SSB FP
Binary

PriA-SSB AS
Continuous

RMI-FANCM
Binary

RMI-FANCM
Continuous

PCBA

Random Forest X
CBF X X
IRV X
STNN-C X
STNN-R X
MTNN X X
Vanilla LSTM X
Ensemble NN X X

Table 9. On target PriA-SSB AS , different datasets that each model is using.

model PriA-SSB AS
Binary

PriA-SSB FP
Binary

PriA-SSB AS
Continuous

RMI-FANCM
Binary

RMI-FANCM
Continuous

PCBA

Random Forest X
CBF X X
IRV X
STNN-C X
STNN-R X
MTNN X X
Vanilla LSTM X
Ensemble NN X X

Table 10. On target PriA-SSB FP , different datasets that each model is using.

model PriA-SSB AS
Binary

PriA-SSB FP
Binary

PriA-SSB AS
Continuous

RMI-FANCM
Binary

RMI-FANCM
Continuous

PCBA

Random Forest X
CBF X X
IRV X
STNN-C X
STNN-R X
MTNN X X
Vanilla LSTM X
Ensemble NN X X

Table 11. On target RMI-FANCM , different datasets that each model is using.



D
R

A
FT

Shengchao Liu Application for CS Ph.D.

G. HYPERPARAMETER GRID SEARCH

Hyperparameters Candidate Values
learning rate 0.00003, 0.0001, 0.003
weighted schema no_weight, weighted_sample
epoch patience [epoch_size: 200, patience: 50], [epoch_size: 1000, patience: 200]
activations [ReLU, Sigmoid, Sigmoid], [ReLU, ReLU, Sigmoid]

Table 12. Hyperparameter Sweeping for Deep Classification Neural Network, including Single-task and Multi-task.

Hyperparameters Candidate Values
learning rate 0.00003, 0.0001, 0.003
weighted schema no_weight
epoch patience [epoch_size: 200, patience: 50], [epoch_size: 1000, patience: 200]
activations [ReLU, Sigmoid, Sigmoid], [ReLU, ReLU, Sigmoid]

Table 13. Hyperparameter Sweeping for Deep Regression Neural Network.

Hyperparameters Candidate Values
learning rate 0.00003, 0.0001, 0.003
epoch patience [epoch_size: 200, patience: 50]
embedding size 30, 50, 100
hidden size [50], [100], [100, 10], [100, 50], [50, 10]
drop out 0.2, 0.5

Table 14. Hyperparameter Sweeping for Vanilla Recurrent Neural Network.

Hyperparameters Candidate Values
n_estimators 4000, 8000, 16000
max_features None, sqrt, log2
min_samples_leaf 1, 10, 100, 1000
class_weight None, balanced_subsample, balanced

Table 15. Hyperparameter Sweeping for Random Forest.

Hyperparameters Candidate Values
number of neighbors 5, 10, 20, 40, 80
epoch patience [epoch_size: 1000, patience: 20]
batch size 8192
learning rate 0.01
penalty 0.05

Table 16. Hyperparameter Sweeping for IRV.

In deep neural networks, 80% of the 4 folds were used for training and 20% for validation. For random forest, the first 3 folds
were used for training and the 4th fold for validation to prune 108 models down to 7 models. They are both ad-hoc with the goal
of pruning model search space. IRV has one parameter for the number of neighbors which we assumed would not improve
drastically past 100 neighbors, and so, we saw no need to sweep.



D
R

A
FT

Shengchao Liu Application for CS Ph.D.

H. CROSS-VALIDATION: TUKEY UNIVERSAL CONFIDENCE INTERVALS
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I. CROSS-VALIDATION: MODEL COMPARISON RESULTS
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J. CROSS-VALIDATION: METRIC COMPARISON RESULTS
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K. CROSS-VALIDATION: SCATTER PLOT RESULTS
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L. PROSPECTIVE SCREENING: TEST SCORE PLOTS
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M. PROSPECTIVE SCREENING: MODEL COMPARISON RESULTS
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N. PROSPECTIVE SCREENING: METRIC COMPARISON RESULTS

Figure 11. Complete Prospective Screening Metric Comparison
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O. PROSPECTIVE SCREENING: SCATTER PLOT RESULTS
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P. CV VS PS: MODEL ORDERING COMPARISON
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Q. CV VS PS: METRIC ORDERING COMPARISON
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R. NUMBER OF HITS IN TOP 250 PREDICTIONS

Table 17. Number of active hits in top 250 predictions. The last two columns correspond to two clustering methods, and we use this to show how diverse
molecules our models can find. Both algorithms have 40 clusters in all. SIM was identified by Wards clustering based on Tanimoto from ECFP4 fingerprints.
MSC identifies a maximum common substructure which will be further used to group compounds.

model name number of hits SIM Cluster MCS Cluster
Baseline 33 16 18
CBF_a 47 24 24
CBF_b 50 24 25
CBF_c 48 24 25
CBF_d 45 23 23
CBF_e 47 23 23
CBF_f 48 24 24
ConsensusDocking_efr1_opt 0 0 0
ConsensusDocking_max 2 2 2
ConsensusDocking_mean 1 1 1
ConsensusDocking_median 2 2 1
ConsensusDocking_rocauc_opt 0 0 0
Docking_ad4 6 5 5
Docking_dock6 3 3 2
Docking_fred 2 2 2
Docking_hybrid 2 2 2
Docking_plants 1 1 1
Docking_rdockint 2 2 2
Docking_rdocktot 2 2 2
Docking_smina 0 0 0
Docking_surflex 1 1 1
IRV_a 17 9 12
IRV_b 25 13 16
IRV_c 30 16 19
IRV_d 30 16 19
IRV_e 30 16 19
LSTM_a 1 1 1
LSTM_b 1 1 1
MultiClassification_a 26 13 16
MultiClassification_b 31 16 20
RandomForest_a 39 19 22
RandomForest_b 39 19 22
RandomForest_c 39 19 22
RandomForest_d 38 20 22
RandomForest_e 39 20 23
RandomForest_f 27 16 19
RandomForest_g 40 21 24
RandomForest_h 41 21 25
SingleClassification_a 25 12 15
SingleClassification_b 34 18 20
SingleRegression_a 35 16 20
SingleRegression_b 35 20 20
Simple Ensemble 49 25 26
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S. VENN DIAGRAM IN TOP 250 PREDICTIONS

Figure 12. Venn Diagram on 6 selected models.

Figure 13. Venn Diagram on IRV and RF.
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Figure 14. Venn Diagram on NN.

Figure 15. Venn Diagram on CBF.
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Figure 16. Venn Diagram on Docking.

Figure 17. Venn Diagram on Consensus Docking.
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T. SOFTWARE
Here we provide an overview of the libraries used. The particular versions and in-depth details can be found at the project
Github page:

T.1 Why Not DeepChem
One contribution is to provide a user-friendly framework. All codes are published at https://github.com/chao1224/
virtual-screening

1. Our implementation is more generalized, can easily switch between Theano and TensorFlow. And comparing to TensorFlow,
Keras is easier to start with.

2. At the time, DeepChem was being updated, particularly their deep-learning framework. Furthermore, there was no support
for early stopping using a validation set and consecutive iterative runs of the same model. Due to these limitations we
decided not to use DeepChem except for IRV since an implementation existed. We modified DeepChem to work with early
stopping for IRV.

3. DeepChem is not using the distributed version, which means they didn’t benefit any speed up from the TensorFlow
framework, so switching to it cannot bring us instant benefit. Because using CHTC pools, we should be able to get as
computation performance as DeepChem. Besides, we also have another distributed version in PyTorch.

4. DeepChem still keeps updating and miss some functionality, and customized framework can help us better develop our
ideas. Besides, DeepChem group has a lot of computation resources, that’s why they don’t need validation and early
stopping, and we offer a framework that can be fit for both sufficient and constrained computation conditions, and this will
be a good optional choice.

T.2 Model Libraries
1. Neural network models use Keras [4] a Python library that works on top of Theano or Tensorflow.

2. Random Forest models use Scikit-Learn [25].

3. IRV uses a modified version of DeepChem [2].

4. Calibrated-Decision-Trees use [39].

5. Docking use .

T.3 Metric Libraries
1. AUC[ROC] calculation uses Scikit-Learn [25].

2. AUC[PR] calculation uses PRROC R package [8].

3. Tukey-HSD uses the statsmodel Python library [29].

https://github.com/chao1224/virtual-screening
https://github.com/chao1224/virtual-screening

