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Virtual (computational) high-throughput chemical screening provides a strategy for prioritizing
compounds for experimental screens. The optimal virtual screening algorithm depends on the dataset
and evaluation strategy. We consider a wide range of ligand-based machine learning and docking-
based approaches for virtual screening on two protein-protein interactions, SSB-PriA and RMI-FANCM,
and present a strategy for choosing which algorithm is best for prospective compound prioritization.
Our workflow identifies a random forest as the best algorithm for our targets over more sophisticated
neural network-based models. The top 250 predictions from our random forest model recover 41 of
the 84 active compounds from a library of 25,279 molecules assayed on SSB-PriA. We show that
virtual screening methods that perform well in public datasets and synthetic benchmarks, like multi-
task neural networks, do not always translate to wet lab prospective screening performance. In
addition, we are exploring new machine learning ensembling strategies and chemical representations
based on these results. Finally, we are preparing to experimentally test whether the predictive
performance generalizes when prioritizing millions of chemicals.
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