

Motivation

Empirical success of machine learning

Computer vision

Machine translation

Game playing

What about graph-structured data?

Knowledge gra

Social networks

Such data are ubiquitous in applications in social networks, knowledge graphs, chemistry, biology, material science, etc.

Key challenge: representation as numeric feature

- □ Fingerprints: Morgan fingerprints via hashing, ...
- Graph kernels: Weisfeiler-Lehman kernel, ...
- Graph Neural Networks (GNN): GCNN, Weave, ...

Our Results

A new representation method for graphs

- Unsupervised, so can be used by various learning methods
- **Simple**, relatively fast to compute
- **Strong empirical performance**
 - Outperforms traditional fingerprints/kernels and recent popular GNNs on molecule datasets
 - Preliminary results on other types of data are also strong
- Strong theoretical power for representation/prediction
- Inspired by the N-gram approach in NLP

N-Gram Graph: Simple Unsupervised Representation for Graphs with Applications to Molecules

Shengchao Liu, Mehmet Furkan Demirel, Yingyu Liang {shengchao, demirel, yliang}@cs.wisc.edu

Its 2-grams

Experiments

□ 60 tasks on 10 benchmark molecule datasets

Morgan fingerprints + Random Forest (RF) or XGBoost (XGB)

GNN: Graph CNN (GCNN), Weave Neural Network (Weave), Graph

N-gram Graphs + Random Forest (RF) or XGBoost (XGB), with vertex embedding dimension r=100, and T=6

Evaluation: count #times each method gets top-1 and top-3

Table 2: Performance overview: (# of tasks with top-1 performance, # of tasks with top-3 performance) is listed for each model and each dataset. For cases with no top-3 performance on that dataset are left blank. Some

WL SVM	Morgan RF	Morgan XGB	GCNN	Weave	GIN	N-Gram RF	N-Gram XGB
				1, 1	-	0, 1	0, 1
	1, 1				-	0, 1	0, 1
	1, 1				-	0, 1	0, 1
				0, 1	-	0, 1	1, 1
	1, 4	0, 1	7, 12	2,6	-	0, 2	2,11
-		0, 1	4, 7	1,8	-	0, 8	7,12
0, 2	0, 7		0, 2	0, 1		3, 12	9,12
0, 1			1, 2	0, 1			1, 2
4, 12	5, 11	5, 11			0, 7	2, 4	1,6
	11					0.1	0.1
4, 15	9, 25	5, 13	12, 23	4, 18	0, 7	5, 31	21, 48

□ N-gram+XGB: top-1 for 21 in 60 tasks, and top-3 for 48

□ N-gram graph overall better than the other methods

Table 4: Representation construction time in seconds. One task from each dataset as an example. Average over 5

Morgan FPs	GCNN	Weave	GIN	Vertex, Emb	Graph, Emb
CPU	GPU	GPU	GPU	GPU	GPU
0.25	39.70	65.82	-	49.63	2.90
5.28	377.24	536.99	-	1152.80	19.58
17.69	607.23	849.37	-	2695.57	37.40
0.98	103.12	76.48		173.50	10.60
3.60	382.72	262.16		966.49	33.43
19.58	9051.37	1504.77	-	8279.03	169.72
2.03	130.15	142.59	608.57	525.24	10.81
0.63	62.61	95.50	135.68	191.93	3.83
6.31	401.02	690.15	1327.26	1221.25	25.50
17.16	1142.77	2138.10	3641.52	3975.76	139.85

Transferrable vertex embeddings: vertex embeddings can **be pre-trained** on one dataset and used for different datasets; even random vertex embeddings get competitive results

Table 3: AUC-ROC of N-Gram graph with XGB on 12 tasks from Tox21. Six vertex embeddings are considered: non-transfer (trained on Tox21), vertex embeddings generated randomly and learned from 4 other datasets.

Ion-Transfer	Random	Delaney	CEP	MUV	Clintox
0.791	0.790	0.785	0.787	0.796	0.780
0.864	0.846	0.863	0.849	0.864	0.867
0.902	0.895	0.903	0.892	0.901	0.903
0.869	0.858	0.867	0.848	0.858	0.866
0.753	0.751	0.752	0.740	0.735	0.747
0.838	0.820	0.843	0.820	0.827	0.847
0.851	0.809	0.862	0.813	0.832	0.857
0.835	0.823	0.841	0.814	0.835	0.842
0.860	0.830	0.844	0.817	0.845	0.857
0.812	0.777	0.806	0.768	0.805	0.810
0.918	0.909	0.918	0.902	0.916	0.919
0.868	0.856	0.869	0.841	0.856	0.870
0.868	0.856	0.869	0.841	0.856	0.870

Code available: <u>https://github.com/chao1224/n_gram_graph</u>