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Motivation N-gram Graph Embedding Experiments
. . . Key idea: view a graph as a Bag of Walks 60 tasks on 10 benchmark molecule datasets
Empirical success of machine learning
Enumerate all walks of length n (called n-grams), embed each Evaluated methods
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What about graph-structured data? N-gram Graph (suppose the embeddings for vertices are given): vertex embedding dimension =100, and T=6
. 1. Embed each n-gram: entry-wise product of its vertex embeddings Evaluation: count #times each method gets top-1 and top-3
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[N MOREEE o o N, nteraction 3. Repeat forn = 1,2,..., T, and concatenate f(y), ..., fr) for cach model and each dataset. For cases with no top-3 perfonmance on that datavet are Ief blank. Some
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Such data are ubiquitous in applications in social networks, vertex updates Its latent vector by entry-wise multiplying with- e ‘
knowledge graphs, chemistry, biology, material science, etc. the sum of those of its neighbors. Let A be the adjacent matrix. N-gram+XGB: top-1 for 21 in 60 tasks, and top-3 for 48
| | f<1> =F=1fi,..., fm], f0) = Fi)1 N-gram graph overall better than the other methods
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Flngerprlnts . MOrgan flngerprlnts via haShIng, e f (n) — +(n) Table 4: Representation construction time in seconds. One task from each dataset as an example. Average over 5
_ _ end for folds, and including both the training set and test set.
Graph kernels: Weisfeller-Lehman kernel, ... Tk || Dy || T |emuEs | GONRC ) e | O] Messi Ry | SRS
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A new representation method for graphs Let V be vocabulary of different vertices. ¢4, is of dimension ||, Transferrable vertex embeddings: vertex embeddings can
i-th coordinate is the times i-th type vertex appears in the graph be pre-trained on one dataset and used for different datasets;

Unsupervised, so can be used by various learning methods

even random vertex embeddings get competitive results
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Vertex embedding I/: i-th column is the embedding vector for i-th type vertex
Inspired by the N-gram approach in NLP

Similar for general n-grams but need more sophisticated analysis Code available:



https://github.com/chao1224/n_gram_graph

