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Abstract

Recently, machine learning techniques have been widely applied in virtual screen-
ing for predicting the properties of molecules. It can provide strategies for priori-
tizing molecules for physical screens and significantly reduce resources for vari-
ous applications in medicine, chemistry, and biology. Despite the increasing inter-
est, the key challenging of constructing proper representations of molecules for the
learning algorithms remains largely open. This paper introduces N-gram graph, a
novel representation for molecules. It is simple, can be efficiently computed on
general molecular graphs, and can be used with various machine learning meth-
ods. Experiments on several data sets demonstrate that the novel representation is
able to reach the state-of-the-art performance on multiple tasks, even with simple
machine learning models.

Introduction

The goal in drug discovery tasks is to test the properties of the molecules. Traditional physical
screening is typically accurate and valid but also very costly and slow. In contrast, virtual screening
using machine learning can be done in minutes for predictions on millions of molecules. Therefore,
virtual screening can be a good filtering step before the physical experiment, so as to help accelerate
the drug discovery process. To achieve this goal, the predictions generated by virtual screening
should be made accurate.

The advances in deep learning have led to many achievements in the area of image classification and
speech recognition, and recent efforts have applied to various other problems including, in particular,
virtual screening. But unlike image and speech data, the most common raw input in drug discovery
provide only highly abstract representations of the chemicals, which are not directly well-handled by
existing learning systems. This creates a stumbling block in making good predictions on molecules.
To address this issue, various representation methods are proposed, and the most commonly used
ones are reviewed below.

Chemical fingerprints, perhaps the most widely used feature representations, encode each molecule
as a fixed length bit vector. The prototypical method is the Morgan fingerprints, where each bit
vector corresponds to a hashing bucket. To construct the fingerprint, first check the presence of a
set of substructures, then hash the presented ones to the buckets, and finally set the bit based on
whether the corresponding bucket is empty or not. Due to the hashing collisions, it is difficult to
interpret such fingerprints and exam how the machine learning systems utilize them. Another proto-
typical method, Simplified Molecular Input Line Entry System (SMILES), is a character sequence
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describing molecular structures. There are some inherent issues in SMILES, the biggest being that
molecules cannot be simply represented as a linear sequence: the properties of drug-like organic
molecules usually have dependence on ring structures and tree-like branching, whose information is
lost in a linear sequence. An example of Morgan fingerprints and SMILES is illustrated in Figure 1.

Figure 1: Illustration of three ways for molecule representation. The molecule graph is displayed
on a 2D space. The corresponding canonical SMILES is c1cc(oc1C(=O)Nc2nc(cs2)C(=O)OCC)Br,
and Morgan Fingerprints is, for example, [000000...00100100100...000000].

The benefits of applying deep neural networks in the horizon of drug discovery are yet to be fully
realized, but we can make a conceptual analog to the image classification problems. Molecules can
be simply visualized as a 3D graph, and we can easily fit images into this pattern: images are highly
structured 2D graphs, where each pixel is the vertex in the graph and is connected to pixels in at
most four directions (up, down, left, right). Thus this implicit attribute in images can filter out useful
information after the convolution layers and pooling layers in the state-of-the-art deep convolution
models. Following this idea, graph-structure data, including social networks and molecules, can be
effectively utilized in learning given a good filtering strategy. For example, [6] introduces neural
fingerprints, which first starts to apply a graph layer on the graph-structure data then followed by
deep neural networks.

Such graph-based representations in principle have several advantages. They can contain compre-
hensive information for molecules, including the skeleton structure, conformational information,
and atom features. In contrast, classic molecule representations used in machine learning, such as
chemical fingerprints or SMILES, may not be able to encode such information and thus poten-
tially not adequate in some tasks. Furthermore, they are part of deep learning systems, which can
be trained end-to-end. On the other hand, the classic molecule representations like chemical fin-
gerprints or SMILES are simple and efficient to calculate, and can be used by different machine
learning methods. They can be used by simple methods like random forest or by deep neural net-
works: a fully-connected neural network on top of fingerprints can lead to a good fit for the data, and
both the convolution and recurrent neural networks can map SMILES strings into a latent space for
prediction. Furthermore, another disadvantage for graph-based representations is that most efforts
focus on message passing between adjacent atoms as representation, which may over-emphasize the
local structure and ignore more general information, like the molecule shape. Can we combine the
benefits of the two worlds by designing a simple and efficient representation, that can be used by
different learning approaches and achieve comparable or even better performance than the existing
sophisticated representation methods?

To achieve this, this paper introduces a novel graph-based representation called N-gram graph. It
first imposes segmented random projection on each atom to get vertex embedding. Then it splits a
molecule graph into N-grams with different N’s, where an N-gram refers to a path of length N in that
graph, and constructs the embedding for each N-gram based on the embeddings of its vertices. The
final representation of a molecule is constructed based on the embeddings of all its N-grams. Once
constructed, the representations can be fed into different machine learning methods. Furthermore,
more localized information is encoded by paths with smaller N, while more globalized information
is encoded by paths with larger N. Experiment results support the conclusion that molecule repre-
sentation has become a bottleneck in virtual screening tasks, and significant gains might be achieved
by novel representation methods.

In summary, the contributions of this paper are as follows:

1. We design a novel representation on graph-like data, called N-gram graph. It is much
simpler than existing graph-based deep neural networks, yet the performance can compete
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with the most up-to-date models. And it is very efficient; all the calculations are simple
operations like sum and element-wise products.

2. N-gram graph is able to support a finer-grained encoding of the structural information due
to the separation of paths of different lengths. This also allows it to balance local and global
structural information.

3. The N-gram graph does not require an end-to-end training process, therefore multiple non-
deep supervised machine learning methods can be trained on it. Current graph-based deep
neural networks apply message passing for information delivery and are only designed for
end-to-end deep neural networks, but N-gram graph allows non-deep supervised machine
learning methods to reach state-of-the-art performance.

4. The N-gram graph representations show promising generalization performance on deep
neural networks. They consistently lead to smaller gaps between training and test perfor-
mance than existing representations, suggesting that the information is encoded in a way
suitable for learning.

Related Work

Deep learning methods started to capture the attention among scientists in the drug discovery domain
from Merck Molecular Activity Challange [18, 4]. Efforts expanded to investigate the benefits of
multi-task deep neural networks, frequently showing outstanding performance when comparing with
shallow models [16, 22, 15]. All of these works used Morgan fingerprints as input representations.

Another option for molecule representation is the SMILES string [24]. SMILES can be treated as
a sequence of atoms and bonds, and each molecule has a unique canonical SMILES string among
a frequently vast set of noncanonical, but completely valid, SMILES strings. Therefore, attempts
were made to make SMILES feed into more complicated neural networks. [11] applied recurrent
neural network language model (RNN) and convolutional neural networks (CNN) on SMILES, and
showed that CNN is best when evaluated on the log-loss. SMILES as the representation is now
common in molecule generation tasks. [9] first applied SMILES for automatic molecule design, and
[13] proposed using a parser tree on SMILES so as to produce more grammatically-valid molecules,
where the input is the one-hot encoded rules. On the other hand, [15] showed the limitation of
SMILES and itself as a structured data is hard to interpret, and thus SMILES are not used in our
experiments.

Molecular descriptors [20] is another representation, but it requires heuristically coming up with
descriptors and dynamically adjusting it to tasks, which is not easy and requires a lot of domain
knowledge. Therefore molecular descriptors are not considered in this paper since one of the goal
here is to get a generalized feature representation.

Recent works started to explore the graph representation, and the benefit is its capability to encode
the structured data. [6] first utilized message passing on graphs. At each step, this method passes the
hidden message layer to the intermediate feature layer. The summed-up neural fingerprints are then
fed into neural networks as features. Following this line of research, [1] made small adaptations by
using the last message layer as feature inputs for neural network, and [26] proposed a differential
pooling layer to learn the hierarchical information.

Other variants introduced different modules. [12] proposed a new module called weave for delivering
information among atoms and bonds, and [17] used a weave operation with forward and backward
operations across a molecule graph. [14] utilized edge information, and [7] generalized it into a
message passing network framework, highlighting the importance of spatial information.

Background and Preliminaries

Generally, molecules can be represented in different formats for machine learning models. The ideal
representation should contain comprehensive information for each molecule (like molecule graph)
and at the same time easy to learn over for downstream machine learning methods. We consider the
following three types of representations in our experiments.
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Morgan Fingerprints

Morgan fingerprints and its variants [19] have been one of the most widely used featurization meth-
ods in virtual screening. It is an iterative algorithm that encodes the circular substructures of the
molecule as identifiers at increasing levels with each iteration. In each iteration, hashing is applied
to generate new identifiers, and thus, there is a chance that two substructures are represented by the
same identifier. In the end, a list of identifiers encoding the substructures is folded to bit positions of
a fixed-length bit string. A 1-bit at a particular position indicates the presence of a substructure (or
multiple substructures) and a 0-bit indicates the absence of corresponding substructures.

Graph Representation

Nearly all drug-like molecules can be potentially represented as a graph, where each atom is a vertex
and each bond is an edge.

Suppose there are m vertices in the graph, each vertex is denoted by ai, where i ∈ {0, 1, ...m− 1}.
Each vertex entails useful information, like atom symbol and number of charges for atom nodes.
These vertex features are encoded into vertex attribute matrix N ∈ {0, 1}m×d, where d is the
dimension of vertex feature. Adjacency matrix A ∈ {0, 1}m×m is able to depict the skeleton of a
graph.

In the molecule graph setting, the attribute vectorNi,· is defined in Equation (1). As in Equation (2),
Ai,j = 1 if and only if two vertices, ai and aj , are linked.

Ni,· = [C,Cl, I,F, . . .︸ ︷︷ ︸
atom symbol

, 0, 1, 2, 3, 4, 5, 6︸ ︷︷ ︸
atom degree

, . . . , 0, 1︸︷︷︸
is acceptor

, 0, 1︸︷︷︸
is donor

] (1)

Ai,j =

{
1, atomi and atomj are bonded
0, otherwise

(2)

Each N-gram path in a graph is represented by V , and |V | is the length of that path. A path with
length n is represented by Vn. The set of all N-gram paths with same length is called a N-gram path
set. These notions will be used in the next section.

Message Passing on Graph Neural Networks

In recent works, message passing has been dominant in graph-based deep neural networks. Message
passing has T iterations, corresponding to T layers in deep networks. At step t, each vertex will
pass its information only to its neighbors. After continuing for T steps, each vertex is able to pass
its own information to vertices at most T -steps away. Therefore, message passing is capable of
encoding local structure within the radius of T . The final layer will then aggregate information from
all vertices as global representation.

Let the intermediate matrix at step t be Mt, and operation A · Mt allows each vertex to pass its
own information to its neighbors, where · is the matrix multiplication. Message passing will then
multiply it with hidden layer Ht followed by activation function σ. Repeat this process for T times,
and the output matrixMT is assumed to capture the global information. This process can be nicely
written in Equation (3).M0 = N at the initial step.

Mt+1 = σ(Ht[Mt +A ·Mt]) (3)

One restriction of graph-based representation is that it is only applicable to end-to-end deep neural
networks, where all parameters are learned through back-propagation.

N-gram Graph: A Novel Representation

N-gram graph is an order-invariant representation for a graph (e.g., a molecule graph). An N-gram
refers to a path of length N in the graph. The method views a given graph as a bag of N-grams and
builds representations on them. The high-level process is described as follows:
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N 0
i,· N 1

i,· N (S−1)
i,·

. . .

G0 · N 0
i,· G1 · N 1

i,· G(S−1) · N (S−1)
i,·

. . .concat

Figure 2: Segmented random projection on vertex ai. Each vertex’s features can be split into S seg-
ments. Each group of feature with dimension ds corresponds to a one-hot vector Ns

i,· ∈ {0, 1}1×ds

(marked in grey). This vector is then multiplied by the Gaussian random matrix Gs ∈ Rr×ds , yield-
ing a projection into a random space. For each randomized vertex feature gi, the only non-zero
column in output matrix Gs · N s

i,· in each segment will be extracted and concatenated as the vertex-
level embedding.

1. The vertex embedding is obtained by applying vertex-level representation called seg-
mented random projection.

2. The N-gram path embedding is obtained by the element-wise product of the embeddings
of the vertices in the path.

3. For a fixed path length N , sum up all the N-gram paths to get the embedding for the N-
gram path set.

4. Concatenate the N-gram path sets with multiple N’s (e.g., N=1,2,3) to get the final N-gram
graph representation.

The N-gram graph method is inspired by the N-gram approach in natural language processing (NLP),
which is a classical representation method for text data. There, an N-gram refers to N consecutive
words in a sentence. A word is mapped to a vector (one-hot vector or other word embeddings).
An N-gram can be embedded as the element-wise product of the vectors in it, which corresponds
to the diagonal of the tensor product of the word vectors. Summing up all N-gram embeddings
and concatenating them for different N lead to the final N-gram embedding for a sentence. This
has been shown both theoretically and empirically to preserve good information for downstream
learning tasks even using random word vectors (e.g., [23, 2]). We extend this idea from linear graphs
(sentences) to general graphs (molecules). We also design our own vertex embedding method to
replace the word embedding methods, as detailed below.

The following subsections will go step by step, from problem formulation, to vertex-level represen-
tation, and to graph-level representation.

Problem Formulation

For each graph, the goal is to find a set of shared substructures among all the positives. The sub-
structure should preserve related information such as the vertex features and spatial positions. The
intuition is that the predicted graphs will have the important properties and be labeled positive if and
only if they contain the crucial substructure.

The target is to find such crucial substructure, which can be represented by a candidate set
C ∈ {0, 1}m×1, where each bit in C means the corresponding vertex is crucial for the target task.
Therefore graph-structured data can be represented in Equation (4).

N T · C = c1 (4)

A⊗ (C · CT ) ∼= c2 (5)

where · is the matrix multiplication, ⊗ is the element-wise multiplication, and A ∼= B means two
matrices, A and B, are isomorphic. For the above constraints in Equation (4), c1 ∈ Rd represents
the number of vertices in the crucial substructure, and c2 ∈ Rm is the skeleton for it. Note that
here, c1 and c2 represent two abstract patterns, and we are not trying to refer them to any specific
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components in different algorithms (like feature layers), since they can be quite flexible. To be more
specific, if the graph data already contains such patterned structure, then c1 and c2 can be directly
used as input features; while in the end-to-end deep models, c1 and c2 can be learned through back
propagation, therefore we treat them as intermediate layers.

One issue for the candidate set C is that it is sensitive to the vertex ordering. Once the indices of
vertices are switched, the graph data stays the same but the corresponding representation may change
totally. This motivates the order-invariant N-gram graph representation.

Vertex Level: Segmented Random Projection

We first apply segmented random projection to get the vertex-level embedding. Recall that A is
the adjacency matrix, andN is the vertex attribute matrix. Vertex features can be treated as S feature
segments, where each segment is a one-hot vector. One example is given in Equation (1). Similarly,
the vertex attribute matrix can be divided into S segments, N = [N 0,N 1, . . . ,N (S−1)].

Let G = [G0,G1, . . . ,G(S−1)] ∈ RS×r×d be a randomized Gaussian matrix, where d is the di-
mension of the vertex feature and r is the dimension of the random space. It can be divided into S
segments according to vertex features. Ni,· is the feature for vertex ai, and gi is the corresponding
randomized representation. The segmented randomized projection function f : Ni,· → gi is defined
in Equation (6).

gi = f(Ni,·)

= f([N 0
i,·,N 1

i,·, . . . ,N
(S−1)
i,· ])

= [
∑

(G0 · N 0
i,·),

∑
(G1 · N 1

i,·), . . . ,∑
(G(S−1) · N (S−1)

i,· )]

(6)

where
∑

is the summation along the axis of feature dimension ds.
∑

(Gs · N s
i,·) ∈ Rr×1 is the ran-

dom projection on s-th feature segment for ai. Concatenation of S segments yields gi = f(Ni,·) ∈
Rr×S . Figure 2 describes the whole projection process.

Graph Level: N-Gram Graph

Vertex ordering becomes one of the biggest challenges under the current problem formulation. Re-
ordering vertices in one graph will not change its properties, but the candidate set C is not capable
of recognizing this difference. Adding an order-invariant representation seems to be a reasonable
solution. As mentioned, the N-gram approach is a classic technique used in NLP. It represents a sen-
tence as counts of the contiguous sequence of N words in the sentence. Viewing words as vertices
and sentences as linear graphs inspire us to come up with a N-gram method for graph representation.

Each N-gram is a path of length N , and is represented by the element-wise product of the vertices
embeddings in that path. Then the embedding for the N-gram path set of length n, denoted as
Vn ∈ Rr×S , n ∈ {1, 2, . . . , N}, is defined as the sum of the embeddings for all n-grams:

Vn =
∑

∀V,s.t. |V |=n

N-gram path︷ ︸︸ ︷∏
ai∈V

f(Ni,·)︸ ︷︷ ︸
segmented random projection︸ ︷︷ ︸

N-graph path set

(7)

The N-gram graph representation is the concatenation of N-gram path sets embeddigns with mul-
tiple length n, i.e., G = [V1,V2, . . . ,VN ] ∈ RN×r×S .

Note that N-gram graph representation, each component Vn of G corresponds to the path represen-
tation with a different length n. Compared to the message-passing in the end-to-end graph-based
deep neural networks or Morgan fingerprints generation, the N-gram graph representation can offer
a finer-grained view of the graphs, in the sense that it separates different local structures by path
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length. Moreover, only path information is involved in the construction of G. But in a message
passing graph, important information can get delivered back-and-force along each pair of adjacent
vertices, which may lead to a biased representation focusing more on shorter paths.

N-gram graph can be used in different learning methods. It can be flattened into a 1-dimensional
vector as input features into non-deep models like random forest or XGBoost. It can also be fed
directly into deep neural networks, potentially with flatten operations in the intermediate layers.

Experiments and Results

Recall that machine learning for virtual screening is an efficient way to make drug predictions.
Here we test the accuracy of N-gram graph on virtual screening tasks, and compare it with two
types of feature representation: Morgan fingerprints and Message-passing graph on end-to-end deep
neural networks. N-gram graph proves its effectiveness on various data sets with respect to both the
prediction accuracy and generalization ability.

Settings

Six models and three different feature representations were tested on 3 regression tasks and 12
classification tasks. Table 1 lists the feature representation and model combinations. Random Forest
(RF) and XGBoost (XGB) [3] are non-deep models. Fully-connected Deep Neural Network (DNN)
is deep but not end-to-end. Neural Fingerprints (NEF) [6], Graph CNN (GCNN) [1], and Weave
Neural Network (Weave) [12] are end-to-end deep networks and they are only designed for Message-
passing graphs.

Table 1: Feature representation for each different machine learning model. Here we have 9 different
combinations. Both Morgan fingerprints and N-gram graph are trained on non-deep models and
fully-connected deep neural networks.

Model Feature Representation
NEF Message-passing graph

GCNN Message-passing graph
Weave Message-passing graph

RF Morgan fingerprints / N-gram graph
XGB Morgan fingerprints / N-gram graph
DNN Morgan fingerprints / N-gram graph

Table S2 lists the specific d = 42 features and S = 8 segments for the vertices. All data sets are
split into five folds with one selected as hold-out test set. We follow the hyperparameters provided in
[6, 1, 12] for NEF, GCNN and Weave respectively. For other models, we run a comprehensive grid
search for hyperparameter sweeping, including two non-deep machine learning algorithms, RF and
XGB. More details about hyperparameters are provided in the appendix. Furthermore, for models
using N-gram graph, the effects of the random projection dimension r and the N-gram dimension
N will be discussed in the appendix, while the following sections display results with N = 6 and
r = 100. (The effect of N and r are discussed in the appendix). All the codes will be public on
GitHub.

Regression Tasks

Table 2: RMSE on three regression tasks (test set). Top three results after 5-fold cross-validation are
bolded, and standard deviation values are included in Table S9. Baseline results (∗) are from [6, 12].

Representation Morgan Message-passing graph N-gram graph
Method RF XGB DNN NEF(*) GCNN Weave(*) RF XGB DNN
delaney 1.311 1.110 1.231 0.520 0.913 0.460 0.773 0.700 0.699
malaria 1.028 1.008 1.052 1.160 1.055 1.070 1.030 1.010 1.119

cep 1.642 1.410 1.477 1.430 1.184 1.100 1.379 1.290 1.365

Compound representations were compared on three different regression tasks from the same data
sets used in the previous work [6].
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• Delaney: 1144 molecules were measured with respect to the aqueous solubility [5].
• Malaria: [8] measures the drug efficacy of 10,000 molecules against the parasite that

causes malaria.
• CEP: A subset of 20,000 molecules from Havard Clean Energy Project (CEP) [10]. It aims

at estimating organic photovoltaic efficiency.

As demonstrated in Table 2, performance on regression tasks varies a lot. When comparing N-gram
graph with Morgan fingerprints, all three models can obtain better RMSE. Message-passing graph
shows slightly better performance on Delaney and CEP, but other models based on N-gram graph
are very comparative.

Classification Tasks

Table 3: AUC[ROC] on test set on Tox21. Top three results after 5-fold cross-validation are bolded,
and standard deviations are included in Table S6. Each row corresponds to a task, except that last
row measures the general performance over all tasks.

Featurization Morgan Message-passing graph N-gram graph
Method RF XGB DNN NEF GCNN Weave RF XGB DNN
NR-AR 0.787 0.777 0.756 0.723 0.793 0.796 0.802 0.790 0.795

NR-AR-LBD 0.864 0.852 0.817 0.813 0.858 0.816 0.844 0.858 0.853
NR-AhR 0.903 0.900 0.854 0.841 0.896 0.869 0.890 0.898 0.869

NR-Aromatase 0.827 0.802 0.742 0.738 0.824 0.830 0.845 0.852 0.830
NR-ER 0.724 0.721 0.692 0.673 0.734 0.729 0.727 0.733 0.712

NR-ER-LBD 0.815 0.783 0.772 0.725 0.805 0.804 0.810 0.819 0.787
NR-PPAR-gamma 0.839 0.793 0.756 0.758 0.821 0.803 0.801 0.825 0.783

SR-ARE 0.818 0.809 0.781 0.740 0.782 0.790 0.808 0.826 0.777
SR-ATAD5 0.857 0.828 0.738 0.763 0.839 0.823 0.841 0.837 0.811

SR-HSE 0.793 0.764 0.731 0.702 0.774 0.771 0.773 0.786 0.750
SR-MMP 0.886 0.879 0.856 0.856 0.888 0.886 0.895 0.909 0.865
SR-p53 0.849 0.823 0.759 0.782 0.840 0.813 0.833 0.843 0.805
average 0.830 0.811 0.771 0.760 0.821 0.811 0.822 0.831 0.803

Table 4: Generalization performance: Train and test gap on AUC[ROC]. Top three results after 5-fold
cross-validation are bolded, and standard deviations are included in Table S7.

Representation Morgan Message-passing graph N-gram graph
Task RF XGB DNN NEF GCNN Weave RF XGB DNN

NR-AR 0.213 0.209 0.243 0.277 0.125 0.115 0.198 0.210 0.093
NR-AR-LBD 0.136 0.144 0.180 0.187 0.115 0.156 0.156 0.142 0.112

NR-AhR 0.097 0.091 0.146 0.154 0.054 0.059 0.110 0.102 0.048
NR-Aromatase 0.172 0.190 0.258 0.262 0.112 0.099 0.155 0.148 0.066

NR-ER 0.274 0.238 0.307 0.319 0.129 0.129 0.273 0.267 0.032
NR-ER-LBD 0.184 0.205 0.228 0.274 0.134 0.119 0.189 0.181 0.105

NR-PPAR-gamma 0.161 0.199 0.244 0.241 0.142 0.147 0.197 0.175 0.147
SR-ARE 0.181 0.166 0.219 0.255 0.118 0.099 0.192 0.174 0.075

SR-ATAD5 0.143 0.167 0.262 0.234 0.125 0.129 0.159 0.163 0.123
SR-HSE 0.206 0.222 0.269 0.296 0.155 0.155 0.225 0.214 0.095
SR-MMP 0.114 0.109 0.144 0.144 0.069 0.063 0.105 0.091 0.047
SR-p53 0.151 0.170 0.241 0.215 0.107 0.112 0.167 0.157 0.064
average 0.169 0.176 0.229 0.238 0.115 0.115 0.177 0.169 0.084

Tox21: "Toxicology in the 21st Century" [21] initiative created a public database measuring toxicity
of compounds, which was used in the 2014 Tox21 Data Challenge. Table S1 shows the sizes of the
tasks. Nine representation and model pairs are tested on twelve tasks, and Table 3 summarizes the
AUC[ROC] on the test set. Overall, we observe that N-gram graph indeed leads to comparable or
even better performance than the other approaches. Details are discussed below.

After a thorough hyperparameter sweeping, both RF on Morgan fingerprints and N-gram graph and
XGB on N-gram graph in Table 3 prove to be top three algorithms. Other algorithms, like GCNN and
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Weave, also exhibit competitive performance. Switching from Morgan fingerprints to N-gram graph
appears to benefit XGB and DNN performance, especially for DNN: we observe the performance on
11 out of 12 tasks get improved, and 7 out of 12 taks get improved on XGB. Such huge improvements
show the effectiveness of N-gram graph.

Random forest on Morgan fingerprints has performance beyond general expectation. One possible
explanation is that we have used 4000 trees and obtained improved performance compared to 75
trees as in [25]. This is not surprising, since the number of trees is the most important parameter
as pointed out in [15]. Another possible reason is that Morgan fingerprints indeed contains suffi-
cient amount of information for the classification tasks, and methods like random forest are good at
exploiting them while deep neural networks are not.

If only deep neural networks are considered, GCNN and Weave are generally better than DNN and
NEF in Tox21 data set. This reveals that N-gram graph may be a better fit to decision tree models,
yet DNN shows most robust performance as will be discussed below. Future work could be done to
investigate more suitable deep neural network structures.

Generalization Performance on Tox21

An advantage of the N-gram graph representations is that they lead to good generalization perfor-
mance, as shown in Table 4. In particular, when used by deep neural networks, they consistently
lead to the smallest gaps between train and test performance. This demonstrates that they encode
the information needed for classification in a way suitable for the neural networks to extract. It is
also observed that the Morgan fingerprints typically has large gaps (statistical analysis in Figure S3).
This is probably because that the information encoded by the hashing scheme is hard to exploit by
the learning methods. This then requires larger hypothesis class to fit the feature, resulting in larger
gaps. In contrast, a small gap for N-gram graph suggests that the information is encoded in a learning
friendly way, easy for learning methods to exploit.

Conclusion

This paper introduces a novel representation method called N-gram graph for graph structured
data, and applies it on molecule property predictions in the virtual screening tasks. The first step in
tackling this task is the derivation of problem formulation which requires an order-invariant repre-
sentation. Then, the idea of N-gram from NLP is taken and extended to graph data. The resulting
representation can be used by most supervised machine learning methods. Comprehensive exper-
iments show the potential benefits of N-gram graph by reaching state-of-the-art performance on
many benchmarks using different classification and regression models.

This work provides a simple, principled, and effective method to handle the graph-structured data. In
areas like image classification, representations learned by the convolution layer and other techniques
have allowed deep learning methods to take a dominant role. We believe in the domains with graph-
structured data like molecules, similar great improvements would be accessible with both novel
representation and novel algorithm. Concrete future work can be generalizing the word embedding
methods and attention mechanisms from NLP.
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[11] Stanisław Jastrzębski, Damian Leśniak, and Wojciech Marian Czarnecki. Learning to smile (s). arXiv
preprint arXiv:1602.06289, 2016.

[12] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph convo-
lutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8):595–608, 2016.

[13] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
arXiv preprint arXiv:1703.01925, 2017.

[14] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

[15] Shengchao Liu, Moayad Alnammi, Spencer S Ericksen, Andrew F Voter, James L Keck, F Michael Hoff-
mann, Scott A Wildman, and Anthony Gitter. Practical model selection for prospective virtual screening.
bioRxiv, page 337956, 2018.

[16] Junshui Ma, Robert P Sheridan, Andy Liaw, George E Dahl, and Vladimir Svetnik. Deep neural nets as a
method for quantitative structure–activity relationships. Journal of chemical information and modeling,
55(2):263–274, 2015.

[17] Matthew K. Matlock, Na Le Dang, and S. Joshua Swamidass. Learning a Local-Variable Model of Aro-
matic and Conjugated Systems. ACS Central Science, 4(1):52–62, January 2018.

[18] Merck. Merck molecular activity challenge. https://www.kaggle.com/c/MerckActivity, 2012.

[19] HL Morgan. The generation of a unique machine description for chemical structures-a technique devel-
oped at chemical abstracts service. Journal of Chemical Documentation, 5(2):107–113, 1965.

[20] Roberto Todeschini and Viviana Consonni. Molecular descriptors for chemoinformatics: volume I: al-
phabetical listing/volume II: appendices, references, volume 41. John Wiley & Sons, 2009.

[21] Tox21 Data Challenge. Tox21 data challenge 2014. https://tripod.nih.gov/tox21/challenge/, 2014.

[22] Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg K Wegner, Hugo Ceule-
mans, and Sepp Hochreiter. Deep learning as an opportunity in virtual screening. Advances in neural
information processing systems, 27, 2014.

10



[23] Sida Wang and Christopher D Manning. Baselines and bigrams: Simple, good sentiment and topic clas-
sification. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Short Papers-Volume 2, pages 90–94. Association for Computational Linguistics, 2012.

[24] David Weininger, Arthur Weininger, and Joseph L Weininger. Smiles. 2. algorithm for generation of
unique smiles notation. Journal of Chemical Information and Computer Sciences, 29(2):97–101, 1989.

[25] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical
Science, 9(2):513–530, 2018.

[26] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure Leskovec. Hi-
erarchical graph representation learning withdifferentiable pooling. arXiv preprint arXiv:1806.08804,
2018.

11



Task Specification

Table S1: Number of positives and total number of molecules in 12 Tox21 tasks.

Task Num of Positives Total Number
NR-AR 304 7332

NR-AR-LBD 237 6817
NR-AhR 783 6592

NR-Aromatase 298 5853
NR-ER 784 6237

NR-ER-LBD 347 7014
NR-PPAR-gamma 186 6505

SR-ARE 954 5907
SR-ATAD5 262 7140

SR-HSE 378 6562
SR-MMP 912 5834
SR-p53 414 6814

Atom Feature Specification

Table S2 shows the types of features and feature segments for the atoms in the molecules of the data
sets used in our experiments.

Table S2: d = 42 features are divided into S = 8 segments. Each segment of features correspond
to one type of atom property, including atom symbol, atom degree, atom charge, etc. Note that the
number of atom symbols can be pretty large, so we use the last bit ’Unknown’ as the placeholder to
catch the missing symbols.

id digit property values
0 0-9 atom symbol [C, Cl, I, F, O, N, P, S, Br, Unknown]
1 10-16 atom degree [0, 1, 2, 3, 4, 5, 6]
2 17-23 number of Hytrogeon [0, 1, 2, 3, 4, 5, 6]
3 24-29 implicit valence [0, 1, 2, 3, 4, 5]
4 30-35 atom charge [-2, -1, 0, 1, 2, 3]
5 36-37 is aromatic [no, yes]
6 38-39 is acceptor [no, yes]
7 40-41 is donor [no, yes]

Hyperparameter Search

For Neural Fingerprints, Graph CNN and Weave Neural Network, we follow the hyperparameters
provided in [6, 1, 12] respectively. For other models, we run a comprehensive grid search for hyper-
parameter sweeping, including random forest in Table S3, XGBoost in Table S4, and fully-connected
deep neural network in Table S5.

Table S3: Hyperparameter sweeping for random forest.

Hyperparameters Candidate values
n_estimators 4000, 8000, 16000
max_features None, sqrt, log2
min_samples_leaf 1, 10, 100, 1000
class_weight None, balanced_subsample, balanced

12



Table S4: Hyperparameter sweeping for XGBoost.

Hyperparameters Candidate values
max_depth 5, 10, 50, 100
learning_rate 1, 3e-1, 1e-1, 3e-2
n_estimators 30, 100, 300, 1000, 3000

Table S5: Hyperparameter sweeping for fully-connected deep neural network.

Hyperparameters Candidate values
batch_size 128, 256, 512
epoch 100, 500, 1000
network structure [50, 30], [150, 50]

Qualitative Analysis

(a) N = 6, r = 50 (b) N = 6, r = 100

Figure S1: Comparison of pairwise molecule similarities between Morgan fingerprints and N-gram
graph. Each point corresponds to one molecule point where y-axis is the cosine similarity on N-gram
graph and x-axis is the cosine similarity on Morgan fingerprints. Larger random dimension (r = 100
on the right) shows slightly wider distribution than lower dimension (r = 50 on the left). The vertical
band of points on the left side of the plots show compounds with no detectable similarities (cosine
similarity=0) by Morgan fingerprints that do show various levels of similarities when comparing
N-gram graph.

To further explain how N-gram graph can help with representation, pairwise cosine similarities on
different representations are compared. Here we randomly select 100 molecules from Delaney data
set [5].

As displayed in Figure S1, similarities based on Morgan fingerprints tend to concentrate around
0, while N-gram graph is inclined to make molecules concentrate on similar representation. Some
molecules are observed to be overlapped on Morgan fingerprints while N-gram graph is able to
distinguish among them.
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Statistical Analysis

Test Performance on Tox21 Tasks

The complete 5-fold cross validation results are displayed in Table S6 and we run Tukey’s test as
shown in Figure S2.

Table S6: AUC[ROC] on test set on Tox21. Top three results after 5-fold cross-validation are bolded.
Each row corresponds to a task, except that last row measures the general performance over all tasks.
N-gram graph representation uses N = 6 and r = 100. Results on other values of N and r are
displayed in Table S10.

Featurization Morgan Message-passing graph N-gram graph
Method RF XGB DNN NEF GCNN Weave RF XGB DNN
NR-AR 0.787

±0.07
0.777
±0.06

0.756
±0.06

0.723
±0.04

0.793
±0.07

0.796
±0.06

0.802
±0.08

0.790
±0.07

0.795
±0.06

NR-AR-LBD 0.864
±0.06

0.852
±0.05

0.817
±0.06

0.813
±0.07

0.858
±0.04

0.816
±0.05

0.844
±0.04

0.858
±0.03

0.853
±0.03

NR-AhR 0.903
±0.03

0.900
±0.02

0.854
±0.04

0.841
±0.05

0.896
±0.02

0.869
±0.04

0.890
±0.02

0.898
±0.02

0.869
±0.02

NR-Aromatase 0.827
±0.07

0.802
±0.06

0.742
±0.10

0.738
±0.06

0.824
±0.05

0.830
±0.05

0.845
±0.07

0.852
±0.05

0.830
±0.06

NR-ER 0.724
±0.02

0.721
±0.02

0.692
±0.02

0.673
±0.04

0.734
±0.04

0.729
±0.02

0.727
±0.04

0.733
±0.04

0.712
±0.02

NR-ER-LBD 0.815
±0.05

0.783
±0.06

0.772
±0.02

0.725
±0.08

0.805
±0.02

0.804
±0.03

0.810
±0.06

0.819
±0.04

0.787
±0.04

NR-PPAR-
gamma

0.839
±0.04

0.793
±0.09

0.756
±0.04

0.758
±0.08

0.821
±0.11

0.803
±0.06

0.801
±0.10

0.825
±0.10

0.783
±0.11

SR-ARE 0.818
±0.04

0.809
±0.04

0.781
±0.05

0.740
±0.03

0.782
±0.04

0.790
±0.05

0.808
±0.03

0.826
±0.02

0.777
±0.05

SR-ATAD5 0.857
±0.05

0.828
±0.07

0.738
±0.08

0.763
±0.09

0.839
±0.04

0.823
±0.04

0.841
±0.03

0.837
±0.04

0.811
±0.02

SR-HSE 0.793
±0.03

0.764
±0.04

0.731
±0.03

0.702
±0.04

0.774
±0.04

0.771
±0.04

0.773
±0.05

0.786
±0.07

0.750
±0.06

SR-MMP 0.886
±0.02

0.879
±0.03

0.856
±0.03

0.856
±0.03

0.888
±0.02

0.886
±0.02

0.895
±0.02

0.909
±0.02

0.865
±0.02

SR-p53 0.849
±0.03

0.823
±0.06

0.759
±0.03

0.782
±0.09

0.840
±0.05

0.813
±0.07

0.833
±0.03

0.843
±0.05

0.805
±0.04

average 0.830
±0.05

0.811
±0.05

0.771
±0.05

0.760
±0.05

0.821
±0.05

0.811
±0.04

0.822
±0.04

0.831
±0.05

0.803
±0.04

Figure S2: Tukey’s test on test performance (AUC[ROC]).
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Generalization Performance on Tox21 Tasks

The generalization performance for complete 5-fold cross validation is displayed in Table S7 and
we run Tukey’s test as shown in Figure S3.

Table S7: Generalization performance: Train and test gap on AUC[ROC]. Top three results after
5-fold cross-validation are bolded. N-gram graph representation uses N = 6 and r = 100. Though
its performance has not reached the best of all, N-gram graph with DNN is the most robust pair.

Representation Morgan Message-passing graph N-gram graph
Task RF XGB DNN NEF GCNN Weave RF XGB DNN
NR-AR 0.213

±0.07
0.209
±0.06

0.243
±0.06

0.277
±0.04

0.125
±0.08

0.115
±0.08

0.198
±0.08

0.210
±0.07

0.093
±0.07

NR-AR-LBD 0.136
±0.06

0.144
±0.05

0.180
±0.05

0.187
±0.07

0.115
±0.04

0.156
±0.04

0.156
±0.04

0.142
±0.03

0.112
±0.05

NR-AhR 0.097
±0.03

0.091
±0.02

0.146
±0.04

0.154
±0.05

0.054
±0.02

0.059
±0.05

0.110
±0.02

0.102
±0.02

0.048
±0.03

NR-Aromatase 0.172
±0.07

0.190
±0.06

0.258
±0.10

0.262
±0.06

0.112
±0.06

0.099
±0.06

0.155
±0.07

0.148
±0.05

0.066
±0.08

NR-ER 0.274
±0.02

0.238
±0.02

0.307
±0.02

0.319
±0.04

0.129
±0.03

0.129
±0.04

0.273
±0.04

0.267
±0.04

0.032
±0.03

NR-ER-LBD 0.184
±0.05

0.205
±0.06

0.228
±0.02

0.274
±0.08

0.134
±0.03

0.119
±0.06

0.189
±0.06

0.181
±0.04

0.105
±0.07

NR-PPAR-
gamma

0.161
±0.04

0.199
±0.09

0.244
±0.04

0.241
±0.08

0.142
±0.11

0.147
±0.06

0.197
±0.11

0.175
±0.10

0.147
±0.13

SR-ARE 0.181
±0.04

0.166
±0.04

0.219
±0.05

0.255
±0.03

0.118
±0.05

0.099
±0.06

0.192
±0.03

0.174
±0.02

0.075
±0.08

SR-ATAD5 0.143
±0.05

0.167
±0.07

0.262
±0.08

0.234
±0.09

0.125
±0.04

0.129
±0.04

0.159
±0.03

0.163
±0.04

0.123
±0.03

SR-HSE 0.206
±0.03

0.222
±0.05

0.269
±0.03

0.296
±0.04

0.155
±0.05

0.155
±0.04

0.225
±0.05

0.214
±0.07

0.095
±0.07

SR-MMP 0.114
±0.02

0.109
±0.03

0.144
±0.03

0.144
±0.03

0.069
±0.03

0.063
±0.02

0.105
±0.02

0.091
±0.02

0.047
±0.04

SR-p53 0.151
±0.03

0.170
±0.06

0.241
±0.03

0.215
±0.10

0.107
±0.06

0.112
±0.07

0.167
±0.03

0.157
±0.05

0.064
±0.05

average 0.169
±0.05

0.176
±0.04

0.229
±0.05

0.238
±0.05

0.115
±0.03

0.115
±0.03

0.177
±0.04

0.169
±0.05

0.084
±0.03

Figure S3: Tukey’s test on generalization performance (AUC[ROC]).
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Test on Models with Different Vector Embeddings

Table S8: For each message-passing graph method, compare the performance on 12 Tox21 tasks.

Group 1 Group 2 mean diff reject
NEF new embedding NEF original embedding 0.0004 False

GCNN new embedding GCNN original embedding -0.0012 False
Weave new embedding Weave original embedding 0.0008 False

To further prove that different vector embeddings are not biasing the message-passing graph meth-
ods, we test the original embeddings proposed in the previous papers [6, 1, 12] and the ones in
Table S2. The null hypothesis here is that means are the same, so rejection=False means we should
accept the null hypothesis. Thus Table S8 shows that two vector embeddings contain very similar
information.

Test Performance on Delaney, Malaria, and CEP

Table S9: RMSE on three regression tasks (test set). Top three results are bolded and the best
performance is underlined. Baseline results (∗) are from [6, 12]. r = 100 and N = 6 in N-gram
graph. Results with other r and N are displayed in Table S11, Table S12, and Table S13.

Representation Morgan Message-passing graph N-gram graph
Method RF XGB DNN NEF(*) GCNN Weave(*) RF XGB DNN
delaney 1.311

±0.17
1.110
±0.13

1.231
±0.11

0.520
± 0.14

0.913
±0.06

0.460
± 0.16

0.773
±0.08

0.700
±0.09

0.699
± 0.05

malaria 1.028
± 0.03

1.008
± 0.03

1.052
±0.05

1.160
±0.06

1.055
±0.04

1.070
±0.12

1.030
±0.02

1.010
± 0.03

1.119
±0.03

cep 1.642
±0.03

1.410
±0.04

1.477
±0.04

1.430
±0.18

1.184
± 0.06

1.100
± 0.12

1.379
±0.01

1.290
± 0.03

1.365
±0.03
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Results on Classification Tasks (Tox21)

We run N-gram graph on 12 classification tasks from "Toxicology in the 21st Century" [21]. We
tested the effects of random projection dimension r and N-gram dimension N , and the ROC on
validation sets are listed in Table S10.

Table S10: This table includes three different methods on N-gram graph. Two values for r and three
valeus for N are tested. For each combination, model with best performance is bolded.

target name r N XGBoost RF DNN

NR-AR

50
2 0.825 0.825 0.855
4 0.832 0.826 0.863
6 0.839 0.826 0.864

100
2 0.818 0.826 0.816
4 0.832 0.823 0.847
6 0.837 0.822 0.830

NR-AR-LBD

50
2 0.835 0.851 0.867
4 0.835 0.849 0.857
6 0.845 0.841 0.857

100
2 0.835 0.855 0.867
4 0.827 0.841 0.857
6 0.843 0.840 0.845

NR-AhR

50
2 0.883 0.874 0.852
4 0.889 0.872 0.852
6 0.884 0.870 0.851

100
2 0.887 0.874 0.866
4 0.888 0.873 0.861
6 0.886 0.872 0.859

NR-Aromatase

50
2 0.839 0.849 0.826
4 0.829 0.849 0.824
6 0.833 0.849 0.826

100
2 0.829 0.853 0.824
4 0.833 0.848 0.834
6 0.829 0.844 0.832

NR-ER

50
2 0.712 0.693 0.708
4 0.717 0.695 0.708
6 0.704 0.697 0.708

100
2 0.711 0.694 0.717
4 0.714 0.698 0.719
6 0.704 0.699 0.729

NR-ER-LBD

50
2 0.811 0.801 0.805
4 0.821 0.816 0.800
6 0.829 0.812 0.799

100
2 0.822 0.798 0.813
4 0.821 0.818 0.801
6 0.822 0.807 0.802

NR-PPAR-gamma

50
2 0.821 0.850 0.726
4 0.784 0.847 0.728
6 0.817 0.826 0.717

100
2 0.802 0.849 0.751
4 0.802 0.835 0.748
6 0.792 0.837 0.772

SR-ARE

50
2 0.819 0.815 0.795
4 0.829 0.824 0.807
6 0.826 0.827 0.804

100
2 0.822 0.815 0.799
4 0.837 0.828 0.803
6 0.836 0.832 0.794
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SR-ATAD5

50
2 0.853 0.840 0.814
4 0.846 0.865 0.807
6 0.844 0.858 0.807

100
2 0.858 0.844 0.805
4 0.853 0.865 0.821
6 0.843 0.858 0.808

SR-HSE

50
2 0.785 0.760 0.775
4 0.805 0.771 0.779
6 0.821 0.773 0.771

100
2 0.792 0.762 0.759
4 0.798 0.775 0.760
6 0.796 0.771 0.764

SR-MMP

50
2 0.897 0.887 0.857
4 0.904 0.893 0.851
6 0.905 0.893 0.849

100
2 0.903 0.889 0.863
4 0.909 0.893 0.860
6 0.908 0.893 0.862

SR-p53

50
2 0.847 0.826 0.778
4 0.864 0.840 0.778
6 0.872 0.843 0.772

100
2 0.855 0.830 0.791
4 0.868 0.841 0.795
6 0.865 0.841 0.794

Average

50
2 0.827 0.823 0.805
4 0.830 0.829 0.804
6 0.835 0.826 0.802

100
2 0.828 0.824 0.806
4 0.832 0.828 0.809
6 0.830 0.826 0.807
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Result On Regression Tasks (Delaney, Malaria, CEP)

We run N-gram graph on 3 regression tasks, Delaney, Malaria, and CEP. We tested the effects of
random projection dimension r and N-gram dimension N , and the RMSE on validation sets are
listed in Table S11, Table S12, and Table S13 respectively.

Table S11: Three models with different combinations of r and n. Evaluated on task Delaney.

target name r n XGBoost RF DNN

Delaney

50
1 0.826 0.805 0.707
2 0.772 0.802 0.678
4 0.771 0.807 0.837
6 0.780 0.819 0.666

100
1 0.804 0.804 0.670
2 0.782 0.800 0.745
4 0.806 0.809 0.686
6 0.783 0.820 0.713

Table S12: Three models with different combinations of r and n. Evaluated on task Malaria.

target name r n XGBoost RF DNN

Malaria

50
1 1.079 1.059 1.112
2 1.033 1.038 1.109
4 1.006 1.016 1.102
6 1.003 1.013 1.085

100
1 1.072 1.054 1.145
2 1.036 1.034 1.129
4 1.007 1.012 1.133
6 0.991 1.011 1.106

Table S13: Three models with different combinations of r and n. Evaluated on task CEP.

target name r n XGBoost RF DNN

CEP

50
1 1.645 1.644 1.540
2 1.487 1.496 1.409
4 1.322 1.377 1.383
6 1.288 1.374 1.359

100
1 1.646 1.642 1.582
2 1.472 1.490 1.414
4 1.330 1.372 1.357
6 1.296 1.367 1.344
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Effects of r and N

As observed from Figure S4, for the 12 tasks from Tox21, the ROC values on the validation set
are not converging as r and N increases. Two possible reasons for this: (1) Data is insufficient.
As shown in Table S1, all tasks have less than 8000 molecules. (2) ROC reveals the ranking of
predictions, while some other metrics, like RMSE shown in Figure S5, are more likely to depict the
predictions in a finer-grained way.

(a) Task NR-AR (b) Task NR-AR-LBD (c) Task NR-AhR

(d) Task NR-Aromatase (e) Task NR-ER (f) Task NR-ER-LBD

(g) Task NR-PPAR (h) Task SR-ARE (i) Task SR-ATAD5

(j) Task SR-HSE (k) Task SR-MMP (l) Task SR-p53

Figure S4: Effects of random projection dimension r and N-gram dimension N on 12 tasks from
Tox21: how the ROC on validation set changes as different r and N .
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As observed from Figure S5, for task Malaria and CEP, increasing N can help reduce the loss, while
different values of random projection dimension r show very similar performance. Performance on
Delaney Figure S5 fluctuates a lot as r and N increases. One conjecture is that such high vari-
ance might be caused by the data insufficiency (only 1144 molecules are contained in this dataset).
However, we can still conclude that for each machine learning algorithm, r = 100 and N = 6 are
reasonable to choose.

(a) Task Delaney (b) Task Malaria (c) Task CEP

Figure S5: Effects of random projection dimension r and N-gram dimension N on tasks Delaney,
Malaria and CEP: how the RMSE on validation set changes as different r and N .
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