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Objectives

Virtual high-throughput screening provides a strat-
egy for prioritizing compounds for physical screens.
Machine learning methods offer an ancillary bene-
fit to make molecule predictions, yet the choice of
representation has been challenging when selecting
algorithms. We emphasize the effects of different
levels of molecule representation. Then, we intro-
duce N-gram graph, a novel representation for a
molecular graph. We demonstrate that N-gram
graph is able to attain most accurate prediction
with several non-deep machine learning methods
on multiple tasks.

Introduction

Molecule representation has become one of the biggest
challenges in virtual screening tasks. Typically ma-
chine learning methods assume three levels of featur-
ization as illustrated in Figure 1.

Figure 1: Pareto curve for feature representation and model un-
derstanding. Frommolecule graph to SMILES to ECFP, more in-
formation is lost, but the corresponding representation becomes
more abstract adn easier for machine to understand.

•Extended Connectivity Fingerprint (ECFP) is a bit
vector, where each bit represents one substructure.

•Simplified Molecular Input Line Entry System
(SMILES) maps each molecule into a string.

•Molecule graph as input feature is first introduced
in [1].

Figure 2: SMILES: c1cc(oc1C(=O)Nc2nc(cs2)C(=O)OCC)Br.
ECFP: [000000...00100100100...000000].

Motivation

•Message passing based on adjacent matrix can help
identify a molecule skeleton.

•Distance matrix maintains the information of a
molecule shape.

•Combining both can keep all the key information in
a molecule.
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(a) stage 1, fix atom a and b
locations. The distance be-
tween atoms is given by dis-
tance matrix.
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(b)Stage 2, construct the molecule
graph following the adjacent ma-
trix. There are two possible loca-
tions for atom c.
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(c) Stage 3, choose c1 as atom C.
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(d) Stage 4, all the remaining
atoms will be uniquely defined in
this 2D space after fixing first three
atoms.

Figure 3: Illustrations on how adjacent matrix and distance ma-
trix can be combined to recover a graph structure.

Graph Representation

Each molecule can be represented as a graph with at
most m atoms. Each atom can be represented as a
vector of d−dimension.

•Adjacent Matrix A ∈ {0, 1}m×m

Ai,j =


1, atomi and atomj are bonded
0, otherwise

•Distance Matrix D ∈ Rm×m

Di,j =
√√√√√(xi − xj)2 + (yi − yj)2 + (zi − zj)2

•Node Attribute Matrix N ∈ {0, 1}d×m. For each
atom, the features are symbol, degree, #
Hytrogeon, charges, is aromatic, is acceptor, is
donor.

N·,i = [C,Cl, I,F, . . .︸ ︷︷ ︸
atom symbol

, 0, 1, 2, 3, 4, 5, 6︸ ︷︷ ︸
atom degree

, . . .]

Methods: N-Gram Graph

Candidate Set: s = {0, 1}m×1, each one bit in s
represents if one atom is crucial for the target task.
Problem Relaxation:

•N · s = c1

•A⊗ (s · sT ) ∼= c2

•D ⊗ (s · sT ) ∼= c3
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·s

concat

Figure 4: Pipeline for Graph-based Neural Network.

Segmented Random Projection:
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Figure 5: Segmented random projection on atom ai. Each atom
features can be split into S segments. Each group of feature with
dimension ds corresponds to a one-hot vector N s

i,· ∈ {0, 1}1×ds

(marked in grey). Multiply it by Gaussian random matrix Gs ∈
Rr×ds as projection to a random space. For each randomized
atom feature gi, the only non-zero column in output matrix Gs ·
N s

i,· in each segment will be extracted and concatenated.

N-gram Path and N-gram Graph:
Let V be a path, and N-gram path (Vn) is the pro-
duction of all n nodes in that path.
Let Vn ∈ Rr×S, p ∈ {1, 2, . . . , N} represent the N-
gram path set. It is defined as the sum of all N-
gram paths with length n.

Vn = ∑
∀V,s.t. |V |=n

n-gram path︷ ︸︸ ︷∏
ai∈V

f (ai)︸ ︷︷ ︸
segmented random projection︸ ︷︷ ︸

n-graph path set
N-gram graph for each molecule G =
[V1,V2, . . . ,Vn] ∈ RN×r×S is the concatenation
of N-gram path sets with multiple length n.

Experiments

•Three regression tasks, Delaney, Malaria, and CEP.
•Six models are tested: RF, XGB, DNN, NEF [1],
GCNN [2], Weave Net [3].

Table 1: RMSE on three regression tasks (test set). Top three
results are bolded and the best performance is underlined.
Baseline results (∗) are from [1, 3].

Representation Method Delaney Malaria CEP

ECFP RF 1.251 1.011 1.667
XGB 1.120 0.998 1.442

DNN (∗) 1.40 1.13 2.00

Message-Passing Graph
NEF (∗) 0.52 1.15 1.43
GCNN 0.98 1.02 1.17

Weave (∗) 0.46 1.07 1.10

N-Gram Graph
RF 0.802 1.011 1.367
XGB 0.771 1.003 1.296
DNN 0.665 1.085 1.359

Conclusion and Discussion

•Another way to explore graph-like feature
representation.

•No requirement for End-to-End deep neural
networks.

•Current graph-based methods haven’t fully utilized
the comprehensive capacity of deep neural network.

•More advanced NLP strategies can be applied for
both modeling and analysis.
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