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Objectives

Virtual high-throughput screening provides a strategy for
prioritizing compounds for physical screens. Machine learn-
ing methods offer an ancillary benefit to make molecule pre-
dictions, yet the choice of representation has been challeng-
ing when selecting algorithms. We emphasize the effects
of different levels of molecule representation. Then, we in-
troduce N-Gram graph, a novel representation for a molec-
ular graph. We demonstrate that N-Gram graph is able
to attain most accurate prediction with several non-deep
machine learning methods on multiple tasks.

Motivation

•Message passing based on adjacent matrix can help identify
a molecule skeleton.

•Distance matrix maintains the information of a molecule
shape.

•Combining both can keep all the key information in a
molecule.
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(a) stage 1, fix atom a and b
locations. The distance be-
tween atoms is given by dis-
tance matrix.
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(b)Stage 2, construct the molecule
graph following the adjacent ma-
trix. There are two possible loca-
tions for atom c.
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(c) Stage 3, choose c1 as atom C.
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(d) Stage 4, all the remaining
atoms will be uniquely defined in
this 2D space after fixing first three
atoms.

Figure 1: Illustrations on how adjacent matrix and distance matrix can be
combined to recover a graph structure.

Graph Representation

Each molecule can be represented as a graph with at most m atoms. Each atom can
be represented as a vector of d−dimension.

•Adjacent Matrix A ∈ {0, 1}m×m

Ai,j =


1, atomi and atomj are bonded
0, otherwise

•Distance Matrix D ∈ Rm×m

Di,j =
√√√√√(xi − xj)2 + (yi − yj)2 + (zi − zj)2

•Node Attribute Matrix N ∈ {0, 1}d×m. For each atom, the features are symbol,
degree, # Hytrogeon, charges, is aromatic, is acceptor, is donor.

N·,i = [C,Cl, I,F, . . .︸ ︷︷ ︸
atom symbol

, 0, 1, 2, 3, 4, 5, 6︸ ︷︷ ︸
atom degree

, . . .]

Methods: N-Gram Graph

Segmented Random Projection:
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Figure 2: Segmented random projection on atom ai. Each atom features can be split into S segments.
Each group of feature with dimension ds corresponds to a one-hot vector N s

i,· ∈ {0, 1}1×ds (marked in
grey). Multiply it by Gaussian random matrix Gs ∈ Rr×ds as projection to a random space. For each
randomized atom feature gi, the only non-zero column in output matrix Gs · N s

i,· in each segment will
be extracted and concatenated.

N-Gram Path and N-Gram Graph:
Let V be a path, and N-Gram path (Vn) is the production of all n nodes in that path.
Let Vn ∈ Rr×S, p ∈ {1, 2, . . . , N} represent the N-Gram path set. It is defined
as the sum of all N-Gram paths with length n.

Vn = ∑
∀V,s.t. |V |=n

N-Gram path︷ ︸︸ ︷∏
ai∈V

f (ai)︸ ︷︷ ︸
segmented random projection︸ ︷︷ ︸

n-graph path set

N-Gram graph for each molecule G = [V1,V2, . . . ,Vn] ∈ RN×r×S is the concatenation
of N-Gram path sets with multiple length n.

Experiments

•Three regression tasks, Delaney, Malaria, and CEP.
•Six models are tested: RF, XGB, DNN, NEF [1], GCNN [2],
Weave Net [3].

Table 1: RMSE on three regression tasks (test set). Top three results are
bolded and the best performance is underlined. Baseline results (∗) are
from [1, 3].

Representation Method Delaney Malaria CEP

ECFP RF 1.251 1.011 1.667
XGB 1.120 0.998 1.442

DNN (∗) 1.40 1.13 2.00

Message-Passing Graph
NEF (∗) 0.52 1.15 1.43
GCNN 0.98 1.02 1.17

Weave (∗) 0.46 1.07 1.10

N-Gram Graph
RF 0.802 1.011 1.367
XGB 0.771 1.003 1.296
DNN 0.665 1.085 1.359

Conclusion and Discussion

•No requirement for End-to-End deep neural networks.
•Current graph-based methods haven’t fully utilized the
comprehensive capacity of deep neural network.

•More advanced NLP strategies can be applied for both
modeling and analysis.
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