bayesCT: An R package for Adaptive Bayesian Clinical Trials

Thevaa Chandereng¹, Donald Musgrove², Shengchao Liu¹, Tarek Haddad², Rick Chappell¹

¹ Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA

² Medtronic, Inc., Mounds View, MN, USA

Objective

Adaptive Bayesian clinical trials have gained much popularity over the years due to the great deal of flexibility and power over conventional clinical trials. We are continuously developing an R package (bayesCT) for adaptive bayesian clinical trials. bayesCT package is available at

thevaachandereng.github.io/bayesCT.bayesCT

- incorporates historical data to reduce sample size using the power prior approach
- allows early stopping for futility and early success during interim looks
- pipes for modular input to ease understanding of inputs
- parallel programming to reduce computational time

Currently, the bayesCT R package supports Gaussian, binomial and time-to-event data.

Historical Borrowing via Discount Functions

Incorporation of historical data involves weighting a likelihood, known generally as the power prior approach

$$\pi(\theta \mid y_0, \alpha) \propto L(\theta \mid y_0)^{\alpha} \cdot \pi(\theta)$$
Prior Historical data likelihood Initial prior

- ullet θ is the parameter of interest
- y_0 is the historical data
- ullet α is the historical data weight

Discount function approach

Discounting reduces the impact of the historical data likelihood on the prior

- Similarity measure p between current and historical data
- ullet Discount function H modules the effect of the similarity on the historical data weight

Similarity measure

- Construct a surrogate statistics θ , derived from current data to facilitate the comparison between current and historical data (eg $\bar{\theta} = y/N$)
- Then, estimate p can be obtained

Or

$$\Phi(\frac{\theta - \theta_0}{\sqrt{\sigma_0^2 + \bar{\sigma^2}}}$$

Example with single-arm Binomial count endpoint with incorporation of historical data

Early Stopping for Futility or Early Success

Interim Analysis - Stop for Futility or Success (eg.)

$$P(\underbrace{\theta_T - \theta_C}_{\text{posterior treatment difference}} > \underbrace{\delta}_{\text{Margin}} | y, y_0, \alpha) < \underbrace{\omega}_{\text{futility}} \qquad P(\underbrace{\theta_T - \theta_C}_{\text{posterior treatment difference}}) = \underbrace{\delta}_{\text{futility}} | y, y_0, \alpha) < \underbrace{\omega}_{\text{futility}} \qquad P(\underbrace{\theta_T - \theta_C}_{\text{posterior treatment difference}}) = \underbrace{\delta}_{\text{posterior treatment difference}} | y, y_0, \alpha) < \underbrace{\omega}_{\text{posterior treatment difference}} = \underbrace{\delta}_{\text{posterior treatment difference}} | y, y_0, \alpha) < \underbrace{\omega}_{\text{posterior treatment difference}} = \underbrace{\delta}_{\text{posterior treatment difference}} | y, y_0, \alpha) < \underbrace{\omega}_{\text{posterior treatment difference}} = \underbrace{\delta}_{\text{posterior treatment difference}} | y, y_0, \alpha) < \underbrace{\omega}_{\text{posterior treatment difference}} = \underbrace{\delta}_{\text{posterior treatment difference}} | y, y_0, \alpha) < \underbrace{\delta}_{\text{posterior treatment differe$$

 $P(\underbrace{\theta_T - \theta_C}_{\text{posterior treatment difference}} > \underbrace{\delta}_{\text{Margin}} | y, y_0, \alpha) > \underbrace{\Delta}_{\text{success rate}}$

Usability (Eg: OPC Trial)

Piping Modular Inputs

$$H_0: \pi_{treatment} \ge 0.08$$
 $H_A: \pi_{treatment} < 0.08$

Better understanding of the inputs rather than feeding them into one big function at once! Similar idea to dplyr, keras R package.

${f Enrollment}$

- Homogeneous Poisson process does not work well in clinical trial
- Inhomogenous with different cutoff points better fit
- Patient enrollment usually increases as time progress
- Omits enrollment date considers time zero as study initiation

$$\lambda = \begin{cases} \lambda_1, & t \in [0, t_1) \\ \lambda_2, & t \in [t_1, t_2) \end{cases}$$
 \vdots
 $\lambda_k & t \in [t_{k-1}, \infty)$

Randomization

Randomization is important to eliminate bias in analysis (to eliminate confounders)

- Complete randomization does not work well (physician usually get better as time progress)
- Block Randomization
- Randomize within a block and allow multiple block size
- Allow imbalanced randomization ratio (treatment vs control)
- Block size is a allocation group

References

Carlin, B. P., Berry, S. M., Lee, J. J., & Muller, P. (2010). Bayesian adaptive methods for clinical trials. CRC press.