

Molecule Representation Learning: A Perspective from Topology, Geometry, and Textual Description

Shengchao Liu, Mila-UdeM

3D Molecular Graph 3D GNN

Internal Structure

String (SMILES, SELFIES) CNN, RNN, LM

OC(=0)C1=CC=CC=C10

2D Molecular Graph 2D GNN

Fingerprint RF, XGB, MLP

0001100....00100...1100

Biological Knowledge Graph (KG) GNN

External Knowledge

Molecule Data Structure & Representation

Textual Description RNN, LM

Biomedical Text

Salicylic acid is a phenolic compound present in the plants, where it plays a central role in the development of resistance to pathogen infection.

GraphMVP: Pre-training Molecular Graph Representation with 3D Geometry ICLR 2022

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, Jian Tang

Motivation & Problem Definition

Ultimate goal:

- Molecular property prediction on target (downstream) tasks.
- MoleculeNet [1]: only 2D topology for molecular graph is available.

Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning." Chemical science 9.2 (2018): 513-530.

Community has put more efforts in gathering large-scale 3D geometry datasets.

GEOM (250K, June 2020)

3D Molecular Graph

GraphMVP

$$I(X;Y) \Longrightarrow \left(\frac{1}{2}\mathbb{E}_{p(x,y)}[\log p(x|y) + \log p(y|x)]\right)$$

Energy-Based Model, Noise Contrastive Estimation (EBM-NCE)

Variational Representation Reconstruction (VRR)

Follow-up:

Doing reconstruction on the data space is better than that of representation space.

More Datasets

Community has put more efforts in gathering large-scale 3D geometry datasets.

- GEOM (250K, June 2020)
- No 3D downstream tasks in GraphMVP
 - QM9 has ~130K data points.
 - MD17 has 50K-1M conformers.

- [after submission of GraphMVP]
 - Molecule3D (3.8M, Aug 2021)
 - PCQM4Mv2 (3.4M, May 2022)

GeoSSL: Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching ICLR 2023

Shengchao Liu, Hongyu Guo, Jian Tang

Problem Definition

Pure 3D geometric representation exploration.

- Pretraining: a large molecule 3D dataset (1M from Molecule3D [1]).
- Downstream tasks:
 - QM9: quantum mechanics prediction.
 - MD17: force prediction.
 - LBA & LEP: ligand-pocket binding prediction.

Coordinate Perturbation

Coordinate perturbation is important!

Table 5: An evidence example on molecular data. The goal is to predict 12 quantum properties (regression tasks) of 3D molecules (with 3D coordinates on each atom). The evaluation metric is MAE.

Model	Mode	Alpha ↓	Gap↓	НОМО↓	LUMO ↓	Mu ↓	Cv↓	G298↓	H298↓	R2 ↓	U298 ↓	U0↓	Zpve ↓	1
SchNet	Stable Geometry Type Corruption	0.070 0.074	50.59 52.07	32.53 33.64	26.33 26.75	0.029 0.032	0.032 0.032	14.68 21.68	14.85 22.93	0.122 0.231	14.70 23.01	14.44 22.99	1.698 1.677	
	Coordinate Corruption		110.59	79.92	78.59	0.422	0.113	57.07	58.92	18.649	60.71	59.32	5.151	
PaiNN	Stable Geometry Type Corruption	0.048 0.057	44.50 45.61	26.00 27.22	21.11 22.16	0.016 0.016	0.025 0.025	8.31 11.48	7.67 11.60	0.132 0.181	7.77 11.15	7.89 10.89	1.322 1.339	
	Coordinate Corruption		108.31	73.43	72.35	0.391	0.095	48.40	51.82	16.828	51.43	48.95	4.395	

Potential Energy Surface

GeoSSL: SE(3)-Invariant Denoising Pretraining

$$\mathcal{L}_{GeoSSL} = \frac{1}{2} \mathbb{E}_{p(g_1, g_2)} \left[\log p(g_1 | g_2) \right] + \frac{1}{2} \mathbb{E}_{p(g_1, g_2)} \left[\log p(g_2 | g_1) \right]$$

MoleculeSTM: Multi-modal Molecule Structure-text Model for Text-based Editing and Retrieval In Submission

Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei Xiao, Anima Anandkumar

Motivation & Goal

In this work, we want to explore two modalities of molecules:

- Chemical structure and domain text.
- Revealing two attributes of natural language.
 - Open vocabulary.
 - Compositionality.

Pipeline

A new dataset PubChemCLIP.

- PubChem has ~110M molecules.
- PubChemCLIP has 280K structure-text pairs.

SMILES: c1cccc1

Benzene is a colorless liquid with a sweet odor. It evaporates into the air very quickly and dissolves slightly in water.

SMILES: Oc1cccc1

Phenol is both a manufactured chemical and a natural substance. It is a colorless-to-white solid when pure.

SMILES: CC(=O)Oc1ccccc1C(=O)O

Acetylsalicylic acid appears as odorless white crystals or crystalline powder with a slightly bitter taste.

(a) Structure-text Retrieval Results

Pipeline

Zero-shot Text-guided Molecule Editing

Phase 2: Latent Optimization

Text prompt, ChEMBL 1613777:

"This molecule is tested positive in an assay that are inhibitors and substrates of an enzyme protein. It uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule."

(a) Set 1, input molecule (SMILES): Cc1cc(F)cc(C(=O)Oc2cccc(C(N)=O)c2)c1

(b) Set 2, input molecule (SMILES): COC(=O)[C@@H]1CN(Cc2cnc(C3CC3)s2)C[C@@H](C)O1

Pipeline

Follow-up [in submission]
Bridging the gap between protein sequence/structure and natural language.

(7) SGNN-EBM (Multi-task Learning) AISTATS'22

(6) Geometric Benchmark ongoing

(4) GraphCG (molecule editing)
In submission

Thank you!

Q&A